CS182 (Designing, Visualizing and
Understanding Deep Neural Networks) Course
Notes [Spring 2021]

Patrick Yin
Updated May 21, 2021

Contents

3.4 Gradient Descent Variantsl

4 Neural Networks|
4.1 Description of Neural Networks|
4.2 Backpropagation| oL oo

4.4 Weight Initialization|

(A5 radient Clipping] e

:4_1.6 Ensemble Learning] o v v v v i
|5 Computer Vision|

[.1 Convolutional Neural Networks (CNNs)|
[5.2 7 Standard Computer Vision Problems|
P.3 Visualizing CNNs|.o o0 oo
P4 Deep Dream|. oo
b.5 Style Transfer|o

|6 Natural Language Processing (NLP)|

6.1 Recurrent Neural Networks (RNNs)|
6.2 Long Short-Term Memory (LSTM)|
6.3 Autoregressive Models| oL

4 q |

6.8 Word Embeddings| o 0000
[6.9 Pretrained Language Models|

17 Reinforcement Learning|

[.1 Imitation Learming|

.2__Introduction to Reinforcement Learning|
7.3 REINFORCE [Introduction to Policy Gradients||
EA Actor-Critic [Policy Gradients Formalized|[.
[7.5 Policy Iteration, Value Iteration, and Q-Iteration]

[7.6 Q-Learning| o 72
|8 Unsupervised Learning) 76
8.1 utoregressive Generative Models| 76
B2 Autoencoders 78
8.3 Latent Variable Modeld 82
8.4 Variational Autoencoder (VAE) 88
8.0 Normalizing Flows| 90
8.6 Generative Adversarial Networks (GANs)| 93
9 Generalization of Neural Networks| 103
9.1 Do Deep Nets Generalize?| 103
9.2 Adversarial Examples| o000 104
03 Adversarfal Atfackd 107
|LO Meta-Learning] 110
[10.1 Introduction (Black-Box Meta-Learning)[. 110
[T0.2 Non-Parametric Meta-Learning] 111
110.3 Gradient-Based Meta-Learning] 113
10.4 Summary] 114
[10.5 Meta-Reinforcement Learning| 114
11 Guest Lectures| 116
11.1 Phillip Isola, MIT |[Generative Models as Data++]| 116
11.2 Azalia Mirhoseini and Anna Goldie [Placement/Combinatorical |
[Optimization with ML]| 123
11.3 Raquel Urtasun |[Interpretable Neural Motion Planning]| 123
11.4 Noam Brown |[ReBeL| 123

1 Note

The images used in this note are taken from Professor Sergey Levine’s version
of CS W182 / 282A: Designing, Visualizing and Understanding Deep Neural
Networks. The course is linked here. Also, (***) denotes that there is some
material there that is not completely proven, which I may go back to later on

to prove.

https://cs182sp21.github.io/

2 ML Basics
2.1 Risk

Definition 1 (Risk Function). The risk function is the expected loss as a func-
tion of 6

R(&, f()) = Emrvp(m),yrvp(y\a:) [E(IZ?, Y, 9)}

For instance, MSE is just risk with £(x,y,0) = (y — fo(x))%. Since we don’t
know the true distribution in practice, we try to estimate this with empirical
risk minimization.

Definition 2 (Empirical Risk). The empirical risk is evaluated on samples from
the true 2 distribution. It is given by

1 n
_) ivg
ngﬁ(w yi, 0)

2.2 Bias-Variance Tradeoff

Overfitting occurs when empirical risk is low, but true risk is high. Underfitting
occurs when empirical risk is high, and true risk is high. Below is a visual
example. The black line is the true function, the dots are the datapoints, and
the orange line is the learned function.

overfitting underfitting

‘/\ ‘/\ ‘/\ '/\ '/\\ ‘//\ ‘f’ﬂ\

One thing to note is that the learned function looks different every time in the
overfitted example but looks similar in the underfitted example. We can this
having high and low ”variance” respectively. This motivates what we call the
bias-variance tradeoff.

Theorem 1 (Bias-Variance Tradeoff). The expected value of error w.r.t our
data distribution Ep.,p)[||fo(z) — f(2)|[?] can be written as

E[ll fo(z) — f(x)|*] = E[llfp(z) — E[fp(«)]||*] + E[|E[fp(2)] — f(2)]*]
Proof.

Elllfo(2) = £(2)%] = Elll fo(z) — E[l fp(2)] + Elllfp(2)] = f(2)]%]
Ellfp(2) — Elfp(2)]I°] + EllE[fp(2)] — f(2)]%]

The left component is called variance, and the right component is the square
of what we call bias. The variance, intuitively, is how much our prediction
changes based on changing the dataset. The bias, intuitively, is the error that
doesn’t go away no matter how much data we have. What we have shown is
that the expected error of model over all possible datasets can be broken down
into Variance 4+ Bias?. If the variance is too high, we are overfitting. In the

bias is too high, we are underfitting.

2.3 Regularization

Regularization is something we can add to the loss function to reduce variance
(this will increase bias as well, so there is some tradeoff here).

2.3.1 Bayesian Interpretation

The bayesian interpretation of regularization is regarded as adding a prior on
parameters. Intuitively, when we have high variance, our data doesn’t give
enough information about parameters. So we add in a prior into the loss function
to help give it information to disambiguate between what, to model, seems to
be equally good models. More formally, we want to maximize the probability
of parameters, 6, given the data, D. Using bayes rule, we know that

p(6,D)
p(0|D) = x p(8,D) = p(D|0)p(0
(0D) (D) (0,D) = p(D|0)p(0)
Since we trying to maximize this probability, this is equivalent to minimizing
the negative log probability. More formally,

argmax p(8|D) = argmax p(D|0)p(H)
0 0

= argmin —log p(D|0) — log p(H)
0

N
= argénin L(0) s.t. L(O) = —(Z log p(y;|x;, 0)) — log p(0)
Here p(6) is our prior. Is it possible to make a prior that makes the function
overfit less (i.e. smoother)? A simple idea would be to let p(f) = N(0, 02) since
the normal distribution assigns higher probabilities to small numbers. This
would allow small parameter values. Intuitively, we don’t want large parameter
values since these typically lead to non-smooth and thus overfitted predictions.
Going along the assumption that the parameters are normally distributed and
uncorrelated, we see that

2 02
log p(6) = —=—~ —log o — flog 2m

1
—\||6]? tst. A= —
10]|° + const s 552

Here, A is our hyperparameter and our new loss function becomes

N
£(6) = ~(3_ 1og plylai,6)) ~ A6 if Soz) =1

3 Gradient Descent

3.1 Gradient Descent

To minimize a loss function, one idea is to go the direction of the gradient.

Algorithm 1 Gradient Descent
1: 9k+1 — Gk — OngE(Gk)

The negative log likelihood of logistic regression is guaranteed to be convex.
As a result, "all roads lead to Rome” in the sense that gradient descent will
always converge to the global minimum given some small enough learning rate.
However, the loss surface of a neural network is not as nice. There are local
optima that gradient descent can get stuck in, plateaus (i.e. virtually flat lines)
that trainers using a small learning rate can get stuck in, and saddle points
that the neural network can get stuck in due to small gradients (in fact, in high
dimensions most critical points are saddle points). So, the direction of steepest
descent may not always be the best way to go.

3.2 Newton’s Method

Newton’s method gives a better descent direction than gradients, but Newton’s
method is too computationally expensive to practically use. Nonetheless, it is
an ideal to strive for. The derivation for Newton’s method comes from the fact
that the multivariate Taylor expansion of the loss function is

£(0) = £(00) + ToL(00)(0 — 00) + 5(0 — 00)" V3L(00) (0 — 00)

If we set the derivative to 0 and solve, we have a new descent algorithm:

Algorithm 2 Newton’s Method Descent
1: Ogqq < O — a(V%E(ek))‘1V9£(9k)

While gradient descent runtime is O(n), newton’s method descent is O(n?),
making it not viable for neural network optimization.

3.3 Gradient Descent Optimization Algorithms
3.3.1 Momentum

Intuitively, if successive gradient steps point in different directions, we should
cancel off the directions that disagree. Conversely, if the gradient steps point in
the same direction, we should go faster in that direction. This motivates that
idea of momentum. We are essentially blending in the previous directions into
the current gradient step.

In practice, this method brings some benefits of Newton’s method (which takes
into account second derivative) at virtually no cost.

Algorithm 3 Momentum

1 g = VoL(Or) + pgr—1
2 Oy <+ O — agy,

3.3.2 RMSProp

Intuitively, the sign of the gradient tells us which way to go along each dimen-
sion, but the magnitude may be misleading. Even worse, the overall magnitude
of the gradient can change drastically over the course of optimization, making
learning rates hard to tune. What if we normalized out the magnitude of the
gradient along each dimension? In RMSProp, we estimate the per-dimension
magnitude of the gradient by taking a running average and normalizing the
descent step by this value:

Algorithm 4 RMSProp

1 s, = Bsp—1 + (1 = B)(VoL(6k))?

2: 9k+1 — 9k — a%‘ff’“)

Note that the square in line 1 and the division is line 2 is element-wise.

3.3.3 AdaGrad

AdaGrad is like RMSProp, but estimates per-dimension cumulative magnitude
rather than per-dimension magnitude:

Algorithm 5 AdaGrad
1: S = Sg—1 + (V@E(@k))Q

2: 0k+1 — 0, — a%ﬁf’“)

AdaGrad has some appealing guarantees for convex problems since the learning
rate effectively decreases over time. But this only works if we find the optimum
quickly before the rate decays too much. On the other hand, RMSProp tends
to be much better for deep learning and most non-convex problems.

3.3.4 Adam

The basic idea of Adam is to combine momentum and RMSProp.

my, the first moment estimate, is a momentum-like estimate of the gradient.
vk, the second moment estimate, estimates the magnitude of the gradients like
in RMSprop. Since mg = 0 and vy = 0, the steps early on will be very small.
To ameliorate this, we blow up the values of m; and vy early on on lines 3 and
4. Notice as that k goes to infinity, the denominator becomes 1, so the gradient
blows up less and less. In the last line, we add an epsilon to prevent divison by

Algorithm 6 Adam

Lmy = Bimg—1 + (1 — B1)VeL(6y)
2: v = Povp—1 + (1 — B2) (VoL (6k))?
3 My = 1T§f

4 v = 13‘%

5: 9k+1 < Hk — Oz\/%ie

zero. Some good default settings are € = 1078, alpha = 0.001, 8; = 0.9, and
B2 = 0.999.

3.4 Gradient Descent Variants
3.4.1 Batch Gradient Descent

Normally, for gradient descent, every update we must compute the gradient of

N
1
L) = -+ > log pa(yilz:)
=1

The issue with this is that computing and summing over all datapoints can be
expensive during training if the dataset is large.

3.4.2 Stochastic Gradient Descent

Instead, we could just train on one datapoint at a time. If we sample randomly,
this is still an unbiased estimator. The issue with stochastic gradient descent is
that training on a single datapoint can have high variance, leading to gradient
updates that can get unstable.

3.4.3 Mini-batch Gradient Descent

The compromise is to train on batches of data at a time. From our dataset, D,
we can sample a smaller batch B C D and estimate g, < —% Zle log pe(yilz;)
for gradient descent: 61 < 0 — agr. Each iteration samples from a different
minibatch. In practice, instead of randomly sampling every iteration, we can
shuffle the dataset in advance and construct batches out of the consecutive
groups of |B| datapoints.

10

4 Neural Networks

4.1 Description of Neural Networks

I am largely going to glimpse over the description of vanilla neural networks.
They are really just computational graphs that take in an input and output a
prediction. They are also differentiable so we can take gradients and update the
weights with gradient descent. For instance, a one-layer neural network would
take in input « and output o(Wzx +b) where o is an activation function such as
a ReLU and W and b are learned parameters through gradient descent.

4.2 Backpropagation

Backpropagation is an efficient way to find gradients for a neural network. The
algorithm looks like this:

Algorithm 7 Backpropagation

1: Forward pass: calculate each a(¥ and z(?) (i.e. run your input through the
neural network to get the intermediate values and output)

2: Backward pass: Initialize § = ddi(ﬁ)
z n

3: for each f with input x; and parameters 6y do

dc _ df

do; ddy
5: 6+ ﬁé

dSCf

6: end for

Then we just need to perform gradient descent on all the parameters to get their
updated values.

4.3 Batch Normalization

We want all entries of our input to be roughly on the same scale or else gradients
in the larger inputs will dominant the small ones. To solve this problem, we can
standardize our inputs. One way is just to transform our inputs so they have
p =0, 0 =1. In an equation, this would be

T, = a:i—E[a:] s.t. Elx zi ZT;
= e B v

We're standardize the input, but how do we standardize the activations? This
is where batch normalization comes in. For each activation layer a(®,

1S
CEEV
j=1

o]

11

where v and 3 are learnable parameters. The reason why we do batch normal-
ization over normalizing over all the data is because normalizing over all the
data every activation layer is very expensive. By doing batch norm, we are able
to standardize our activations cheaply. Our learnable parameters help scale our
activations achieve more expressive behavior. For test time, we first take the
mean and variance of our training data, freeze these values, and use them for
testing.

4.4 Weight Initialization

We want to initialize our weights such that they are not too big or too small,
so that the gradients propagate well.

4.4.1 Normal Initialization

A simple choice would to be initialize all weights according to A(0,.0001). The
issue with this is that the magnitude of the activations exponentially decay with
more layers. This is bad because if activations zero, then gradients are zero.

4.4.2 Xavier Initialization

Let’s say we still initial our weights with N (0,0%,) and our bias to around 0.
Then z; = 3°; Wija; + b; = >, Wija;. Assuming that a; ~ N(0,0,) (this is
reasonable since 2 ~ N'(0,1)). Then, E[27] = 3=, E[W?|E[a}] = D,o3,0; where
D, is dimensionality of a. If we select 62, = 5, then E[2?] = ¢2. In other word,
the variance of the next layer’s activations are the same as the current layer’s
activations. This is good because the scale of activations doesn’t increase or
decrease as we increase the number of layers (based on the strong assumptions
we've made) if we initialize the weights as N(0, ﬁ) This is called Xavier
initialization.

4.4.2.1 Xavier Initializations for ReLUs For Xavier initializations on
ReLUs, the negative half of 0-mean activations are removed so the variance is
cut in half. In other words 0’2 = 102, So in order for E[2?] = 0/2, we have to

2
set 02, = 2 (i.e. 0y = ——).

v 3Da

12

4.4.3 Bias Initialization

If we initialize biases at zero, with a ReLU, half our units will be dead on
avaerage. So instead we can initialize our biases to some small positive constant
such as 0.1.

4.4.4 Orthogonal Random Matrix Initialization

A more advanced weight initialization method tries to make the eigenvalues of
the Jacobians be close to identity. Because this way, when we do backpropaga-
tion, our gradient isn’t doesn’t explode and vanish. To do this, we can generate
a random weight matrix from a zero-mean normal distribution. Then we just do
singular value decomposition on the matrix and use the left or right orthogonal
matrix for our initialization depending on which one has the shape we need.

4.5 Gradient Clipping

With exploding gradients, where our trainer takes a gradient step too big, this
can lead us very astray from the minimum we want to reach. This can happen
when something gets divided by a small constant (e.g. in batch norm, softmax,
etc.). One hack to ameliorate this issue is that use gradient clipping. Per-
element clipping keeps each element of the gradient between a certain range
(i.e. g; «+ max(min(g;,¢;), —¢;)). Another method, norm clipping, normalizes
the gradient if it is above a certain threshold in magnitude (i.e. g; < g%).
To figure out ¢, we can train for a new epoch to see the magnitude of healthy

gradients.

4.6 Ensemble Learning

From bias-variance tradeoff, our variance is E|[|| fp(z) — E[fp(2)]||?]. If we es-
timate E[fp(z)] =~ ﬁZi\; [p,(x), maybe we find a good estimate for the
expected value and reduce variance, thus decreasing our overall error.

4.6.1 Simple Ensemble Learning

A simple approach is to chop a big dataset into N overlapping but independently
sampled parts, train N seperate models, and then use these models to make a
prediction. A principled approach would be to average their predictions, so
p(ylx) = ﬁ Z]A/il po, (ylz). A simple approach would be just to take majority
vote. In practice, is there is already a lot of randomness in our training already
(random initialization, minibatch shuffling, stochastic gradient descent, etc.),
we can just train N models on the same dataset and then either average their
predictions or do a majority vote.

13

4.6.2 Faster Ensemble Learning

Faster ensemble learning would be for our multiple policies to learn from the
same features. For sample, in an image task, we can get features out of an
image from a convnet. And then from those features, we can do ensemble
learning (versus doing ensemble learning end-to-end). In other words, we have
N heads after the convnet.

4.6.3 Fasterer Ensemble Learning

A even faster and cheaper way to do ensemble learning is to save parameter
snapshots over the course of SGD optimization and use each snapshot as a model
in the ensemble. In this case, we can still average probabilities or vote. But we
also have the third option of just averaging the parameter vectors together.

4.6.4 Dropout (aka Fastererer Ensemble Learning)

Making huge ensembles is pretty expensive, so can we make multiple models
out of a single network? Dropout does it by randomly setting some activation
to zero in the forward pass. Each activation has a p chance of not becoming 0
during the forward pass of training. At test time, we multiply our weights by %
since by forcing activations to zero, we are forcing the weights to be that much
bigger. A smarter method of doing this is to actually divide our activations by
p in the training step.

14

5 Computer Vision

5.1 Convolutional Neural Networks (CNNs)
5.1.1 Brief Introduction to CNNs

Convolutional neural networks have been very effective when dealing with image
input. A standard CNN is made up of convolutional layers, pooling layers, and
fully-connected layers. The motivation for CNNs comes from the fact that if we
just use a fully-connected layer for an image, it would take millions of parameters
and the relative positions of pixels in the image (which is important) would be
lost. Instead, convolutional layers are used which use less parameters and retain
the local information of pixels in an image. Pooling layers simply downsample
an image at each layer. An example diagram of CNN is attached below, which
a convolutional layer and pooling layer alternating.

b
<3
<
& ,

N
R -
e & &
D & s/ A 3
g) & | Rty ’\‘?’
8 v s 4“2/
8 2 e —a
o 220 | L8 LV G z
£ @ & X2x4 &
Lo] 5 =
g S = L >
> > depth: 8
y depth: 4 depth: 8
> «—>
depth: 3 depth: 4

5.1.2 Convolutional Layer

When working with data for images, we usually deal with N-dimensional arrays,
or tensors. The dimensions of the input layer is HEIGHT x WIDTH x CHAN-
NELS (usually 3 channels for rgb). Next we will have filters: FILTER.HEIGHT
x FILTER.WIDTH x OUTPUT CHANNEL x INPUT CHANNEL. This can
be thought of as OUTPUT CHANNEL number of filters that are just FIL-
TER.HEIGHT x FILTER.WIDTH block of weights. Each filters will convolve
around the image to produce a OUTPUT.HEIGHT x OUTPUT.WIDTH ”im-
age”. This image is then applied with a per-element activation function. There
are OUTPUT CHANNEL of these filters, so we can concatenate these out-
putted images together to get a HEIGHT x WIDTH x OUTPUT CHANNEL
tensor. For CNNs, the best way to learn is to watch an animation of it in action.
One good animation is off of Stanford’s CS231n class. The link to their CNN
animation is here.

5.1.2.1 Padding With our current design, activations will shrink every
layer because we are forced to cut off the edges. A workaround to this is to
zero pad. Here, we pad the outside of our image with zeros, this way we don’t
have to cut of the edges when convolving through it, leading to the same di-
mension output as input. A small issue with zero padding is the these zeros will

15

 https://cs231n.github.io/convolutional-networks/

be smaller than any pixel values in the image. To solve this we can average out
the pixel intensities of the image and subtract it from each pixel. This way zero
is the average of the pixel intensities of the image.

uthJ/\

5.1.2.2 Pooling Pooling simply downsamples our image. A popular choice
is max pooling, which takes every nzn piece in an image, takes the max value
of these piece, and outputs just the max. So a 2x2 max pooling layer will make
a 10x10x3 image into a 5x5x3 image.

5.1.2.3 Putting it Together A standard conv net structure is to at each
layer:

1. Apply conv, H x W x C;p, = H X W X Coyt
2. Apply activation o, H X W X Coyt = H X W X Coyt
3. Apply pooling (width N), H x W x Coyt = H/N x W/n x Coyy

5.1.2.4 Strided Convolutions Applying a convolution can be computa-
tionally expensive. One idea is to skip over a few points. Strided convolutions
skip over a few pixels every time a convolution happens. The amount of skip-
ping is called a stride. Normally, our stride would be 1 because we don’t skip
over pixels.

5.1.3 Examples of CNNs

CNNs are progressed significantly over the last decade. We will cover the
progress of CNNs over this decade as it has gotten better and better at classi-
fying images on a image classificaiton bnechmark called ILSVRC (ImageNet),
which contains 1.5 million images on 1000 categories. The error rate of these
networks on ImageNet are attached below.

16

: 152 layers '

b . 11.7
l 22 layers [19 layers l
N 7.3

ﬁ I_ I 8 layers] 8 layers (shallow |

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

5.1.3.1 LeNet The LeNet network was one of the earliest CNNs and pro-
moted the development of deep learning. It did handwritten digit classification
on MNIST. It does convolutions, pooling, convolutions, pooling, and then goes
through some fully-connected layers.

C3:f. maps 16@10x10
S4: {. maps 16@5x5

C1: feature maps
INPUT
32x32 So2Es S2: f. maps
6@14x14

| Fullcnnrtectinn |
Convolutions Subsampling Convolutions ~ Subsampling Full connection

pooling

5.1.3.2 AlexNet AlexNet is the first real deep learning method to beat
non-deep learning methods on ImageNet. The network looks a little strange
because there are two different parts. This is because the model was trained
on two GPUs so each section is trained on one GPU. Today, we don’t really
worry about this sort of things because GPUs have enough memory to keep the
network on one GPU.

17

2g \dense

9|

128 0:

= =2 |—i
dense’| [dense| :|

1000

128 Max
Max 128 Max pooling
pooling pooling

20 04

CONV1: 11x11x96, Stride 4, maps 224x224x3 -> 55x55x96 [without zero padding]
POOL1: 3x3x96, Stride 2, maps 55x55x96 -> 27x27x96

NORML1: Local normalization layer

CONV2: 5x5x256, Stride 1, maps 27x27x96 -> 27x27x256 [with zero padding]
POOL2: 3x3x256, Stride 2, maps 27x27x256 -> 13x13x256

NORM2: Local normalization layer

CONV3: 3x3x384, Stride 1, maps 13x13x256 -> 13x13x384 [with zero padding]
CONVA: 3x3x384, Stride 1, maps 13x13x384 -> 13x13x384 [with zero padding]
CONVS5: 3x3x256, Stride 1, maps 13x13x256 -> 13x13x256 [with zero padding]
POOL3: 3x3x256, Stride 2, maps 13x13x256 -> 6x6x256

FC6: 6x6x256 -> 9,216 -> 4,096 [matrix is 4,096 x 9,216]

FC7: 4,096 -> 4,096

FC8: 4,096 -> 1,000

SOFTMAX

This network uses ReLU nonlinearities after each CONV and uses regularization
techniques such as data augmentation and Dropout. It uses local normalization,
which is not really used anymore (we use batch normalization now).

5.1.3.3 VGG VGG was able to get better accuracy by engineering much
deeper networks. It follows a pattern of applying two convs and pooling, and
then repeating.

224 x 224 x 3 22:1/:. 224 x 64

56{x 56 x 256 adianis
28x28x512
7 Aagxisxale 1x1x4096 1 x1x1000

n W

) convolution+ReLU
1 max pooling
fully nected + ReLU
softmax

18

CONV: 3x3x64, maps 224x224x3 -> 224x224x64
CONV: 3x3x64, maps 224x224x64 -> 224x224x64
POOL: 2x2, maps 224x224x64 -> 112x112x64
CONV: 3x3x128, maps 112x112x64 -> 112x112x128
CONV: 3x3x128, maps 112x112x128 -> 112x112x128
POOL: 2x2, maps 112x112x128 -> 56x56x128
CONV: 3x3x256, maps 56x56x128 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
CONV: 3x3x256, maps 56x56x256 -> 56x56x256
POOL: 2x2, maps 56x56x256 -> 28x28x256

CONV: 3x3x512, maps 28x28x256 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
CONV: 3x3x512, maps 28x28x512 -> 28x28x512
POOL: 2x2, maps 28x28x512 -> 14x14x512

CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
CONV: 3x3x512, maps 14x14x512 -> 14x14x512
POOL: 2x2, maps 14x14x512 -> 7x7x512

FC: 7x7x512 -> 25,088 -> 4,096 +——— almost all
FC: 4,096 -> 4,096

FC: 4,096 -> 1,000

SOFTMAX

Most of the memory is used in the earlier layers due to the large image size.
Most of the parameters are present in the first FC layer. This is not actually a
good thing, and has been improved on in future networks.

5.1.3.4 ResNet ResNet is a very popular architecture today that is very
deep. It is 152 layers. It has an error rate of 3.57% on ImageNet, which is
better an a human.

The ResNet has repeated blocks of conv layers that gets pooled to a smaller

19

size, much like VGG. At the end, we average pool (like max pool but averaging
instead) the convolutional response map and pass it directly through an FC
layer into a softmax. For example, if our response map was 64 x 64 x 512,
then after average pooling it would just be a vector of length 512. We cut out
the entire fully-connected block. It turns out the most of the work is done the
convolutional layers so fully-connected blocks are not really needed. The reason
why ResNet is able to be so deep is because it uses skip connections.

* Residual net

X

weight layer

weight layer

Hx)=F(x)+x @&

F(x) identity

X

The residual layer takes every group of two convolutions, takes the input of the
first input, and adds it to the output of the second layer. The reason why this
helps networks train deeper networks is because during backpropagation, we

want our gradients to be close to I to prevent exploding gradients or vanishing

dH dF
gradients. With a residual layer, - A + 1, so if weights are not too big,
x x
the gradients will be close to 1.

5.2 Standard Computer Vision Problems

The four standard computer vision problems of increasing complexity is object
classification, object localization, object detection, and semantic segmentation
(a.k.a scene understanding). Object classification can be solved directly with
the CNN architectures described above, so this section will go over tackling the
other three problems.

mm ' | ’ ‘m., -

object classification object localization object detection semantic segmentation
a.k.a. scene understanding

20

5.2.1 Object Localization

5.2.1.1 Intersection over Union (IoU) For object localization, our dataset
predictions are now (I;, ;, y;, w;, h;) where (x;,y;) is the left corner of the box
around the image, (w;, h;) are the height and width of the bounding box, and
l; is the classification of the image. An evaluation metric for accuracy of our
bounding box is called intersection over union (IoU), which is just the inter-
section area of the predicted bounding box and true bounding box divided by
the union area of the predicted bounding and true bounding box. One way to
validate if a prediction is correct is to check if the class is correct and the ToU
is greater than 0.5.

5.2.1.2 Sliding Windows Another idea for object localization is to classify
every patch of an image to find which one has the highest probability. We can
use a sliding window to determine the patches of an image. In addition to a
sliding window, we can also vary the aspect ratio of the image as well as how
big the sliding window is relative to the image. In the example below, we choose
the entire image, then we do a sliding window over 1/4 of the image, then we
change the aspect ratio and do sliding window, and then we do sliding window
over 1/9 of the image, and so on.

5.2.1.3 OverFeat OverFeat uses both sliding windows and bounding box
prediction to do object localization. It passes over different regions at different
scales and roughly averages together boxes from different windows weighted by
their probability.

21

— D D u “cat”: 0.21
— iR Esen”

— D D D “cat”: 0.21
and || EXRND

Doing sliding windows on the image can be very costly computationally. One
idea to solve this is to use convolutional classification, where we slide over the
convolutional layer rather than the image itself.

5.2.2 Object Detection

For object detection, naively we could just use the sliding window technique
and just select the windows with highest probabilities. The issue with this is
that high-scoring windows probably have other high-scoring windows nearby, so
we can use non-maximal suppression, where we Kkill of any detections that have
other higher-scoring detection of the same class nearby. We also need to output
multiple things so we could pick a number for number of outputs beforehand.
There are issues with each of these ideas individually, but after combining them
we can get something that works.

5.2.2.1 You Only Look Once (YOLO) YOLO takes an input image and
breaks it into a 7x 7 grid. For each cell in the grid, the model outputs B = 2 sets
of a bounding box location, a confidence score (an estimate over the IoU), and
the class label. Note that the bounding boxes can go out of the cell. Lastly, we
only output bounding boxes above a certain confidence score. During training,
we need to assign responsibility of a cell to each true object. YOLO does this
by using the cell with the highest IoU.

22

S x 5grid on input Final detections

Class probability map

5.2.2.2 Region Proposals (R-CNN, Fast R-CNN, and Faster R-CNN)
R-CNN uses existing computer vision method to extract regions in image and
feed these images into a CNN for classification. So essentially it is just a smarter
sliding window.

Slow R-CNN

However this is really slow. The solution to this is Fast R-CNN, where instead
of getting Regions of Interest (Rols) from the image itself, we geting the Rols
from a convolutional response map. We then take our region of interest, take all

23

the features inside that region, and pool them together (i.e. max pool). Then
we just pass it into a FC layer to produce a class and bounding box.

Fast R-CNN (test time)

Fully-connected layers

“conv5” feature map of image

-~ . Forward whole image through ConvNet

Input image

Currently R-CNN and Fast R-CNN uses selective search to find region propos-
als. This is slow, so instead we can train Rol proposals by taking the same
convolutional response map, and at every position, predict if there is an object
at that location and what its spatial extents are. In other words, this is essen-
tially Overfeat but without predicting class. We are only looking for if an object
might be present there. This method is called Faster R-CNN.

5.2.3 Semantic Segmentation

Semantic segmentation can be thought of as a per-pixel classifier. We want
our output to have the same resolution as the input. We could solve this by
using a CNN and never downsampling, but this is very expensive. So instead, we
reduce the resolution like a regular CNN by downsampling and then increase the
resolution again to output a label for every pixel by upsampling. To upsample,
we will use a transpose convolution.

5.2.3.1 Transpose Convolution The transpose convolution is a convolu-
tion with a fractional stride. The overlapping region after multiplying by the
filters can just be averaged.

24

. o

5.2.3.2 Un-pooling One trick for un-pooling is to, on the forward opera-
tion, save out which index had the max. Then later on in the network when we
have the corresponding upsampling, we take that index and save the value in
the low-resolution map to the corresponding index in the high-resolution map.
This requires our network to be symmetric.

Max Pooling Max Un
. pooling

Remember which element was max! Use positions from
1. 2186 3 pooling layer 0olo0o 2 o

5 5 6 12 0/1 0 0

- . . 3 | a
112)12 1 7.8 Rest of the network 0|j0jo0
7 3|4 8 3 0 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

5.2.3.3 Bottleneck Architecture A simple kind of architecture for doing
this is to use a conventional conv net such as a VGG or ResNet as the first part
and then flip it around to get it back to the original resolution using transpose
convolutions and un-pooling.

Med-res: Med-res:
D, x H/4 x Wi4 D, x H/4 x Wld/

Low-res:

D, x H/4 x Wi4
Input: High-res: High-res: Predictions:

3XHXW D, x H/2 x W12 D, x Hi2 x Wi2 HxwW

5.2.3.4 U-Net The issue with bottleneck architecture is that when you
shove everything into the bottleneck, then some of the spatial information is
actually lost. The solution to this is to take the low-resolution maps, upsam-
ple it, and then connect it with the high-resolution maps from before via skip
connections. This is the idea before U-Net.

25

input
output
-y *|*|*| segmentation

o 5| map

concatenate activations from conv I

layers to upsampling layers ’l_l.

- t
H’I lH’I =»conv 3x3, ReLU
% . ' copy and crop
-l . # max pool 2x2
X} [} # up-conv 2x2
- S — = conv 1xl

There are two convolutional layers, then a downsampling, and then repeated.
Then when we start upsampling, we upsample the previous layer, take the layer
from the original conv net that had the same resolution, and then we concatenate
its activations.

5.3 Visualizing CNNs
5.3.1 Visualizing Filters

We can print out the numbers in the filters of the first layer to visually inspect
the filters to see what they are looking for.

A Experimenal seup

=]
1]

g1 % 1
Time 1)

224x224x3 224 xf

Can’t really visualize higher
layers in a way that makes
much sense

112x 112 x 128

Tx7x512

28X 28X 512 14 x 14512

1x1x4096 1x1x 1000

=) convolution + ReLU
1/ max pooling
fully nected + ReLU
softmax

/

26

It is apparently here that some filters look for different types of edges, color
patterns, etc. The edge detection is much like that of a mammalian brain
because edges are the dominant features in natural images.

5.3.2 Visualizing Neuron Responses

We can also look for images that maximally excite specific units. So we run a
filter at a specific layer across many images to see which portion of the images
gives the highest values.

» l Y ‘ﬂ
J

Figure 4: Top regions for six pool; units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

In the image above, in the bottom row, the filter seems to look for rounded
shiny objects.

5.3.3 Using Gradients For Visualization

For any unit in the filter a! one way to see how much influence an image pixel
1

a

has over that unit is that find — 2. We can calculate it using backpropagation

LL‘Z‘J‘

mnp)

this way:

da‘mnp . . 1o .
1. Set § to 1! (i.e. same size as a' with d,,,p, = 1, all other entries to 0).
a

2. Backprop from layer [to the image.

l
a
3. Last & gives us ——2,

Using this process, we can calculate something like the image on the left at the
bottom. We can kind of make out a cat but it’s hard. With a slightly modified
backprop, we can see that the filter unit looks for big blue eyes.

27

slightly modified
backprop gives
us this:

“guided backpropagation”

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin
Riedmiller. Striving for Simplicity: The All Convolutional Net. 2014.

The trick (or hack) is called guided backpropagation. The idea is that backprop
might not be very interpretable because many units in the network contribute
positive or negative gradients. Maybe if we just keep the positive gradients,
we’ll avoid the compilated negative contributions, and get a cleaner signal. So
for the backward step in ReLU, we also zero out negative gradients at each
layer.

guided backpropagation corresponding image crops

CONV6

guided backpropagation

CONV9

Using guided backprop, we can see that some filters have a preference for faces,
noses, etc.

5.3.4 Optimizing the Input Image

What if we optimized the image to maximially activate a particular unit. In

mnp

other words, we have r + x4+« . This is solving the optimization problem

x
T 4— argmax, aﬁ,mp(a:). More generally, if we want to maximize the image based

on filters in all positions of the image or if we want to maximize the probability of
a particular class, we can solving the optimization problem z « argmax, S(x).

28

By itself, it is too easy to create crazy images without a regularizer. In the blue-
eyed cat example, the blue channel will just go crazy to maximize the activations.
So instead, our optimization problem because x < argmax, S(z) + R(z). A
simple choice is R(z) = A||z|3.

5.3.5 Visualizing Classes

With this in mind, let’s try to visualize class labels. First we need to make sure
to maximize activations before the softmax since the softmax normalizes the the
different class probabilities together. As a result, there is a possibility backprop
won’t maximize the class label activations but rather minimize other class label
activations. A more nuanced procedure that can lead to nicer results is to:

1. Update image with gradient.

2. Blur the image a little (so that optimizer doesn’t produce crazy high-
frequency details)

@

Zero out any pixel with small value (prevents minute noise from confusing
the network)

4. Repeat

and then use a little more nuanced regularizer R(x) in the optimization problem.

Layer 8

Pirate Ship Rocking Chair Teddy Bear Windsor Tie Pitcher

Layer 7

Layer 3 Layer 4

Layer 2

We can see that later layers visualize more complete outlines while earlier layers
visualize more abstract components.
5.4 Deep Dream

Deep Dream essentially looks at which units are activated in a layer and activates
it more. In pseudocode, it does this:

—_

. Pick a layer in conv net

2. Apply a little bit of jitter to the image

. Run forward pass to compute activations of that layer
Set delta to be equal to the activations

Backprop and apply the gradient

Un-jitter the image

I

Repeat 2-6

30

inception_4c/output

Using Deep Dream, we start to see object pop up in the clouds. It essentially
extenuates classes that it sees a little of bit already. We apply jitter as a regu-
larizer to the image to prevent the optimizer to do crazy things to a single pixel.
Some (possibly cursed) images generated by Deep Dream are shown below:

5.5 Style Transfer

So Deep Dream exaggerates the features in a single image. But, what if we
could make features of one image look more like features in another. What if
we could take the relationships between features of one image (i.e. the style)
and the spatial positions of the features (i.e. the content) of another image and
combine these to get a modified version of the content with the style from the
other image.

31

how do we quantify style?

style
relationships between
features
e.g., lots of angles and
straight lines

content /
——+ spatial positions of

features

e.g., where curves,
edges, and corners
are located

This really works???

How do we quantify style and content?

5.5.1 Style

For style, we want to discard spatial information. We instead only care about
which units activate and how different units activate together. In other words,
we ask, between filters, which features tend to co-occur? We can quantify this
by building a feature covariance: Covg,, = E[fxfm]. The expectation is taken
over different positions in the image. So we will, over all positions of the image,
average together the product of two features. If features occur together, their
products will be very large. Otherwise, they will be small. We can build the
Gram matrix where Gy, = Covin. Let G! be the source image Gram matrix
at layer [and A!(x) be the new image Gram matrix at layer I. Our style loss

will be
Estyle(m) = Z Z(chm - Agcm(x))2wl
l km

This weight w; is a little delicate since we need to prioritize relative contribute
to desired style of different levels of abstraction.

5.5.2 Content

For content, we want to prevent the spatial positions instead of looking at
relationships between features. So we can just directly match the features to
the content image:

ACcontent(x) = ZZ(filjk(xcontent> - lejk(x))Z
ij ok

Notice that we choose a specific layer that we consider to be reflective of content,
which is a delicate choice.

32

5.5.3 Putting it Together

Then our new image forced by running backpropagation with = < argmin, Ly (2)+
Econtent (17)

Using style transfer, we can above to transfer different styles to a base image.
Very cool!

33

6 Natural Language Processing (NLP)

6.1 Recurrent Neural Networks (RNNs)
6.1.1 RNN Overview

A standard neural network can’t handle variable-length inputs (e.g. words in
a sentence), motivating RNNs. RNNs are neural networks that share weights
across multiple timesteps, take an input at each timestep, and have variable
number of timesteps. In the graphic below, a’ is the input ”hidden” state and
x1, are the inputs into the network.

—_— | | =] | = | —| | —

¢

1
|
|
I
|
1
a =0

t ottt
T1,1 T1,2 T1,3 T1,4
At each timestep of the RNN (i.e. each blue rectangle), we perform the following
operation
-1
Tit

at =o(W* { } + %)

Here, i stands for the ith input sequence. We are essentially just concatenat-
ing the hidden state from the previous timestep with the input at the current
timestep, and then passing it through a feedforward layer. In concisely, RNNs
can be shown this way as well:

Lrt—» e

Q this fun

The RNN shown above only takes in inputs at each step. But it could also have
outputs as each step too. In the image below, ¢, is the output of the tth time
step.

Ui Y2 Uiz Uia

A B
tot ot ot

1,1 T1,2 T1,3 T14

34

At each timestep of the RNN (i.e. each blue rectangle), we now perform the
following operation

at = o(W* {a;_ﬂj + %)
g = f(a")

Here, f(-) is called a decoder. It could be something simple like a linear layer
+ softmax. For backpropogation, our new loss in this case would be

L(i.T) = Z Li(9r)
]

6.1.2 Backpropagation for RNNNs

Using naive backpropagation for feedforward neural networks won’t work for
RNNs due to two issues:

1) RNN weights appear multiple times in backpropagation (once per timestep).
2) An RNN timestep has two heads (i.e. hidden state to pass into next timestep
and hidden state to pass to decoder).

To solve these two problems, we need to
1) Accumulate the the gradients of the parameters at each timestep as we do
backpropagation instead of setting them.

df . taken literally, gradient at £ — 1 will “overwrite” gradient at ¢
d_ﬂf most libraries don’t have this problem, because they do it differently

ﬂ’c —_— df 5 i, n H :
5 if 5 E+f Eﬁ accumulate” the gradient during the backward pass

dr f
2) Perform reverse-mode automation differentiation, which is a fancy word for

adding up delta vectors coming from all the descendants of a neuron to calculate
gradients.

35

0 e.g., a* = ReLU(z%)
k\& 78 J e S Y.
R

6.1.3 Issues with RNNs

Since RNNs can get very deep when an input sequence is long, our gradients
for weights in the earlier timesteps tend to be either 0 (if many jacobians along
the chain rule are less than 1) or infinity (if many jacobians along the chain
rule are greater than 1). The exploding gradient problem, where gradients tend
towards infinity, can be solved with hacks like gradient clipping. However, the
vanishing gradient problem, where gradients tend toward 0, cannot be easily
solved as the signal from later steps is essentially lost. For best gradient flow,
we want our intermediate jacobians to be the identity matrix. This vanishing
gradient problem motivates LSTMs.

6.1.4 Small Extensions to RNNs

6.1.4.1 RNN Encoders and Decoders We've already seen an RNN "de-
coder,” which is a function that takes in a hidden state of the RNN and outputs
something we want. Similarly, there are RNN "encoders,” which take in an
input and embed it for the network.

36

In this example, the images are "encoded” by a convolutional neural network
(i.e. the "encoder”) for the RNN input. The outputted hidden states, as we’ve
seen before, as "decoded” by a fully connected neural network (i.e. the ”de-
coder”) to get the output we want.

6.1.4.2 Multi-layer RNNs We can also stack multiple layers together for
an RNN like so:

Lo
—1—1--

|

| —=

For the first layer of RNNs, instead of passing the hidden layer to a decoder, we
pass it as input to the second layer of RNNs. Then the second layer functions
essentially the same as our single-layer RNN.

6.1.4.3 Bidirectional RNNs Bidirectional RNNs is just a multi-layer RNN
with the direction of the second layer reversed like so:

The motivation behind this is that for some tasks, we might need to look at
inputs in the future to determine a prediction in the past. For instance, in
speech recognition, we may want to know the entire sentence to give context for
the meaning a word in the middle of the sentence.

37

6.2 Long Short-Term Memory (LSTM)
6.2.1 LSTM Overview

To solve the vanishing gradient problem, we want the intermediate jacobians in
backpropagation to be I when we want to "remember” the signal (otherwise,
we want it to be 0 when we want to ”forget” the signal). This motivates the
design of an LSTM cell, which is shown in the image below:

A

a¢—1 It

“cell state”

ft € [0, 1]
“forget gate”

}Lt

RNN output at
previous time step

Tt ‘ZTt
W |: h’t*l :| +b — fft

gt

0t

An LSTM cell takes in a cell state (a;—1), a hidden state (h:—1), and an input
(z¢). Like with RNNs, h;_1 is concatenated with x; and multiplied by weights.
Unlike RNNs, the weight matrix, W, is four times as long as h;_1. As a result,
W |:ht—1

Tt
length subvectors: f, i, G, 0¢. Through the diagram, we see that the following
operations occur on feedforward:

] + b is four times as long as h;_1. This output is split into four equal-

fr =0o(fr) i = o(ir), g = tanh(gs), 00 = o(0y)
ar = fr-ag—1 +i-g -1
he = ag - o4
9r = f(he)

Here, a; and h; are the cell states and hidden states to be passed in to the next
timestep. f(-) is some decoder function, and §; is the output of the model at
timestep ¢, which goes into the loss function.

38

6.2.2 Intuition behind LSTM

We call f; the forget gate because when it is 0, a;—1 is completed overwritten
by the current input and when it is 1, a;_1 is copied for the current timestep.
In a sense, the value of f; chooses how much we want to ”forget” the previous
information. i;, the input gate, determines if we want to have a modification
to the cell state (i, is 1 if we can the cell state to be modified, 0 if not). g
determines what that modification will be. This allows the model to separately
choose whether to modify or not and how to modify. o, the output gate, con-
trols the next hidden state.

Notice that all the operations applied to a; are linear and that it doesn’t really
change between timesteps. This leads to simple and well-behaved gradients.
Yet, it still has the benefits of nonlinearities through the nonlinear modification
of g; and nonlinear readout (i.e. decoding) through f(-). While f; isn’t actually
I as we wanted, this ends up working well in practice. The cell state is called
long-term memory because it doesn’t really change over time and retains infor-
mation over long periods of time, while the more messy hidden state is called
short-term memory because it is always changing (i.e. at each step, the hidden
state is basically overwritten by W and).

6.2.3 Gated Recurrent Units (GRUs)

ft and g; are the most important gates. This is because g; can incorporate ev-
erything i; has to do. Similarly, the tanh input to h; can, in theory, incorporate
everything o; has to do. So maybe we can simply the LSTM network more. In
fact, GRUs do just that. GRUs are LSTMs without an output gate. In practice,
this tends to work just as well.

6.3 Autoregressive Models
6.3.1 Definition of Autoregressive Model

Autoregressive model is a just a big word for a model that predict future states
based on past states. For example, in text generation, an autoregressive model
can take in the first word of the sentence as a past state and predict the future
state (i.e. the next word). This is sometimes referred to as structured prediction,
because multiple outputs have strong dependencies between these outputs. For
instance, beyond predicting a sentence correctly or not, we also require that
sentences make grammatical sense.

6.3.2 Distributional Shift

Autoregressive models run into an issue where the network only always sees
true sequences as inputs during training, but a test-time it gets as input its own
(potentially incorrect) predictions. This is called distributional shift, because
the input distribution shifts from true string in training to synthetic strings at

39

test time. One solution to this problem is scheduled sampling: feed in mostly
ground truth tokens as input at the beginning of training and feed in mostly the
model’s own predictions at the end of training. The schedule for probability of
using ground truth input tokens is a hyperparameter that can be tuned.

6.4 Seq2Seq
6.4.1 Definition of Sequence-to-Sequence (Seq2Seq) Models

Sequence-to-sequence learning is about training models to convert sequences
from one domain to sequences in another. An example is machine translation.
This is done with an encoder-decoder framework. In the RNN example below,
we have an RNN encoder to encode the French and an RNN decoder to decode
it to English.

A cute puppy <EOSs
Uia iz Bi3 Wia
tt ot ot

— — — — —_— —_— —_—
Ti1 Ty Tiy Tig Yio Ui Yi2 i3
<START> Un chiot mignon <START> A cute puppy

RNN encoder RNN decoder

6.4.2 Beam Search

6.4.2.1 Motivation Say we are training and evaluating a seq2seq model
with a softmax at each decoding timestep, which assigns probability to a list
of words in a vocab list. During evaluation, each decoding timestep outputs a
word, which is used as input to the next decoding timestep (i.e. text gener-
ation). During evaluation of a seq2seq model, at first glance, we might think
that we would want to greedily choose the word with the highest probability at
each timestep in the RNN decoder and feed that to the next decoding timestep.
However, greedily choosing highest probability words may inadvertently lead us
to paths where we are forced to choose incorrect words down the line. Think-
ing about this in terms of probability, given inputs x1.7, we want to maximize
p(y1.1,|r1.7) Where yi.1, are our predictions (i.e. the output of the RNN de-
coder). However, greedily choosing the highest probability at each step doesn’t
necessarily maximize this joint probability. Notice that the joint probability can

be rewritten as
Ty

Py, |zir) = [[p(uelzrr, you 1)
t=1
Ty

log p(yr.r, |z1:7) = Y 10g p(yi|w 1.7, Yo 1)
t=1

40

So we actually want to maximize the sum of the log probability of the decoded
output of each decoding timestep. Doing this by brute force is computationally
expensive since it takes exponential time: for M words and sentences of length
T, a brute force solution would have to look through all possible M7 sequences.
Maybe we can come up with a slightly less accurate, but faster solution?

6.4.2.2 Overview of Beam Search Based on our intuition of sequence
decoding, let us assume that while choosing a highest-probability word on any
step may not be optimal, choosing a very low-probability word is very unlikely
to lead to a good result. In other words, while we can’t be greedy, we can be
somewhat greedy. Intuitively, beam search is just this: we store the k best
sequences so far, and update each of them. Note that £k = 1 is just greedy
decoding. The pseudocode of the algorithm roughly looks like this:

Algorithm 8 Beam Search
1: forte{l,...,T} do
2: For each hypothesis y1.;—1 that we are tracking (there are k of these), find
the top k tokens y 1, ...,y k (i.e. using softmax log probabilities)

3: Sort the resulting k% length ¢ sequences by their total log probability

4: Save any sequences that end in EOS (i.e. end of sentence token)

5: Keep the top k sequences

6: Advance each hypothesis to time ¢ + 1 if we have not reached our stop
condition

7: end for

8: return Saved sequence with highest score where

T
1
score(yi:t|Tir) = T Z log p(ye|z1.7, yo:t—1)
t=1

Our stop condition can either be some cutoff length 7" or until we have N
hypotheses that end in <EOS> (i.e. end of sentence token). To calculate
highest score at the end, we divide the total log probability of the decoded
sequence by its length as to normalize against its length. We do this because
longer sequences will naturally have lower log probability since log p < 0 always.

6.5 Attention
6.5.1 Motivation for Attention

In seq2seq with an RNN encoder and decoder, we have a bottleneck problem.
For decoder timesteps that come later, the encoder signal they receive don’t
come from the encoder directly, but rather come from the activations of de-
coder timesteps before it. To solve this, we want to find someway for decoding
timesteps to peek at the source sentence. This is where attention comes in.

41

all information about the source sequence

is contained in these activations this forms a bottleneck

A cute puppy <EOS>
Yin Ui2 Ui Yia
tt 1

|.-_

- -1

t 1 How can we do this? i
Ti1 Ti2 T3 Yio Vil Yi2 Vi3
mignon chiot Un <START> A cute puppy

6.5.2 Attention Overview

A standard attention model is shown below.

]

i1 Tio Tiz Wio Vil Yiz2 Ui
mignon chiot Un <START= A cute puppy

[
—
)
|
1

—

Crudely speaking, for each decoding timestep which takes in a word as input,
we want the model to choose which word in the encoder is important to it and
use that information. On a more intuitive level, to do this, for each hidden
state in the decoder, s;, we will put it through a query function ¢(-) to get the
query vector g; = g(s;). This will represent what we are looking for at this step.
Similarly, for each hidden state in the encoder, h;, we will get the key vector
k: = k(ht). This vector will represent what type of information is present at
this step. To measure similarity between the key and query vectors, we will
assign an attention score, e, to each (key, query) pair: e,; = k; - ¢;. To find
the encoding hidden state that matters the most, we then just select the h; with

42

the highest attention score. In reality, taking an argmax is nondifferentiable so
instead we take softmax of e; ; for all ¢ starting from ¢ = 0 (i.e. the first decoding
timestep) and weight the encoding hidden states with these softmaxed scores
instead. More rigorously, we will be doing these operations:

Encoder side:

ke = k(hy)
Decoder side:
a = q(st)
€l = ki -q

exp(er)

2o exp(ey)
a, = Z at,lht
t

Now that we have a;, which is the information that we what from the encoder
for s;, we have a few options for how we want to incorporate this information
into our network. One way would be to concatenate a;_1 to the hidden state:
S1—1
a;—1|. Another way could be using a; for the readout (i.e. g = f(s¢,a1)).
xz
One other way would be to concatenate a; as input into the next RNN layer if
we are using a stacked RNN.

Qg =

6.5.3 Attention Variants

There are a number of variants in attention. For choices of k and ¢, we could
just make them identity functions. But maybe we want more expressivity. A
common way to do this is just to use linear multiplicative attention, where
ki = Wi hy and g, = Wys;. This is also convenient because e;; = htTWkTqul =
hI'W,s, so we just have to learn one matrix instead of two. One other separate
variant is to replace
a, = Z at,lht
t

with

a; = Z oy v(he)
t

with some value function. This can give a little added flexibility.

6.5.4 Why Attention Works

Attention is very powerful, because now all decoder steps are connected to all
encoder steps. So with shorter paths between gradients (O(1) rather than O(n)),
now these gradients are much better behaved.

43

6.6 Self-Attention
6.6.1 Overview of Self-Attention

Now that we know attention, the question becomes do we even need a recurrent
structure? What if we just took attention and deleted connections between
timesteps? It turns out that we can transform our RNN into a purely attention-
based model, where attention can access every time step rather than just the
decoder timesteps. This is called self-attention.

a
®
\
5 0 O
Va /
T X1 (') a3
N —
[softmax |
€1,1 €12 €1,3

kq €I1 ka Q‘2 ks fI3

Nt/ Nt At/

hy ha ha

t t t

T) T3

So what’s so difference about this self-attention model compared to attention?
There are two major differences. First, we have deleted the connections between
timesteps as well as between the encoder and decoder. However, this raises
the issue where the decoding timesteps don’t have access to previous decoding
timesteps. So our second change is to give key, value, and query vectors to
each timestep and perform the same attention calculations. The self-attention
equations thus are:

ki = k(hy)
ve = v(hy)
q: = q(st)
et =q -k
exp(e;t)

Q)¢ =

> exple)
a, = Z Qi 1Vt
t

44

Note that even though this is no longer a recurrent model, it is still weight
sharing. For instance, if hy = o(Wa; +b). For each timestep, ¢, h; all share the
same weights.

6.6.2 Multi-Layer Self-Attention

The self-attention layer can be boiled down into the bottom 3 equations in
the self-attention equations above. With this definition, we can actually stack
self-attention networks on top of each other. In the image below, we have a
feedforward network to get key, query, and values, a self-attention layer, and
then a feedforward network again, and then a self-attention layer, and so on.

keep repeating until we've
processed this enough

at the end, somehow decode it into
an answer (more on this later)

self-attention “layer”

ITTEETRRT] 2

Tt tototototot
B o[ke U ks os[ed
Nt NT /S Nt/
;
t t t
ttt ttr ottt
B ol Bl 5
ANt/ Nt/ ANt/
L .

6.7 Transformers
6.7.1 Introduction to Transformers

Now that we know self-attention, we can develop a really powerful type of
sequence model called a transformer. These types of models are currently very
popular and the state-of-the-art for language problems. Examples include BERT
and GPT-3. Before we can go into transformers, we first need to describe 4
changes we need to add to self-attention in order to understand the components
of transformers. These 6 changes are:

1. Positional encoding: addresses lack sequence information, so we need to
add this in somehow

45

2. Multi-headed attention: our current attention model doesn’t have the
ability to select multiple timesteps that it thinks are important

3. Adding nonlinearities: if our value function is linear, we lose a lot of
expressive power without nonlinearities between self-attention layers.

4. Masked decoding: decoders can’t look at key, value pairs in the future since
it hasn’t generated the words yet so we need to deal with this somehow
as well.

5. Cross-attention: If we use masked attention for our decoder (from change
#4), then we need some way to connect the decoder and encoder using
attention. This is called cross-attention.

6. Layer normalization: Batch normalization is hard for sequence models due
to small batch size and sequences being different lengths, so we will use
layer normalization instead.

6.7.2 Components of Transformers

6.7.2.1 Positional Encoding First, we’ll try to add in positional encod-
ings. The issue we have right now is that for self-attention, our sequence might
as well be a bag of words since we have lost the recurrent connections between
timesteps. However, positions of words in sentences carries information. So
we need to add some information for position. The most naive idea is to just

append the timestep ¢ to the input (i.e. Z; = {xtt}). However, in language, ab-

solute position seems to be less important than relative position. This motivates
frequency-based representations, where

[sin(¢/100002*1/4) 7
cos(t/100002*1/4)
sin(¢/100002*2/4)
pe = | cos(t/100002*2/%)

sin(t/100002*%/4)
Lcos(#/100002*2/4)

Here, d is the dimensionality positional encoding, and 10000 is an arbitrary
choice. In the graphic below, the x axis is ¢t and we are varying ¢ to see how the
values of the positional encoding changes.

46

Position Embeddings

) pos -
PEipgs,zi) = sin 7l
10000 @

word position Ps

i=1 i=1
=3 i=3

—_— =4 [R—

By ranging between different frequencies, we can encode the relative position
of t. In the chart below, we see that the first dimension does something like an
even-odd indicator of ¢, and the steps start to take longer as we go down the
positional encoding vector.

Dimension

Index in the sequence

One last method to do positional encoding is to learn it. We could learn a
weight vector P = [p1,pa, ..., pr] € R¥*T where T is the max sequence length
and d is dimensionality of the positional encoding. Every sequence would have
these same learned valued, but the learned values would be difference between
timesteps. To incorporate positional encoding, we can either concatenate them

(zy = [ﬁt}) or add them after embedding the input (emb(z:) + pt).
t

6.7.2.2 Multi-headed Attention Since we are relying entirely on atten-
tion now, we might want to incorporate more than one time step. With the
current design, the softmax will be dominated by one value, and it is hard to
specify that you want two different things. To solve this problem, we will just
have multiple self-attention heads and then concatenate the result.

47

'/----.‘
kii1via keng21U21 ks Q3,131

- " -

Nt/ XNt/ Nt/

t f t

1 9 Ts

In the example above, there are 3 heads. So we will compute weights indepen-
az.1

dently for each head and, in this case, as = |a22
a2 3

6.7.2.3 Adding Nonlinearities In the last step of self-attention, a; =
Yo a1¢vp. If vy is just a linear transformation of the hidden state, then every
self-attention layer is just a linear transformation of the previous layer (with
non-linear weights since oy is calculated with a softmax). This is not very ex-
pressive. So we will apply nonlinearities each step after each self-attention layer.
This is sometimes referred to as position-wise feedforward network.

48

self-attention “layer”

t t tt t t
k1Q‘1i EQZ. ks a3
/

\t/ f \t

\._’

hi h h3
t 1 t —
a as as

t t t
self-attention “layer”

ttt ttt ttt

ky av\v1 ko g2(va ks a3|us

Nt/ Nt/ Nt/

hy hs h
t t t
I 9 I3

Here the left-arrow points to where the nonlinearity occurs. Rather than passing
a; directly into the next layer, we will pass a neural network through it first.

6.7.2.4 Masked Decoding In our decoder, we require the output from a
previous timestep to pass into the current timestep during test time. However,
according to our self-attention model, at the previous timestep, we need the
key and values of all future timesteps. To solve this issue, we cannot allow self-
attention into the future. So we will create an attention variant for the decoder
called masked attention where

{ql ke 1>t
€t =
—00 o/w

Essentially, we will be ignoring the key, value pairs for future timesteps. In
practice, to do this, exp(e;;) will be replaced with 0 inside the softmax if [< ¢.

6.7.2.5 Cross-Attention Cross-attention is just an attention network ex-
cept the queries come from the decoder and the key, value pairs come from the
encoder. Note that cross-attention can also be multi-headed.

49

6.7.2.6 Layer Normalization Batch normalization empirically seems to
enable faster and more stable training. However, batch norm is hard to do for
sequence models since sequences are different lengths and we often are forced
to have small batches due to long sequences. The solution is to use layer norm
instead of batch norm, where we normalize across the dimension of the activation
rather than the batch size. For an activation, a, the layer norm equations looks
like this:

6.7.3 The Transformer

Now that we have all the components of the transformer, we can finally put it
all together to build out the transformer.

The Transformer

multi-head attention keys dﬂd values

’ N N
kg, K and vy ..., .
6 layers, each with d = 512 Linear
701, _¢ ¢ A0d & Norm residual connection with LN
hy = LayerNorm(a; + hy) Food = WiReLU(W{a; + b}) + b}
passed to next layer £+ 1 oo t 1 2
’ . ’ —= Add & Norm residual connection with LN
nt = = WyReLU(W; a b b Laddfto) W-Head A)
't ReLU(+b1) + b =3 Attonton multi-head cross attention
2-layer neural net at each position [Fowerc N
) o1) N 7305 Norm Je~4+——— residual connection with LN
a, = LayerNorm(h, ~ + ay) ki e Norm Viaswed
Multi-Head Muti-Head
essentially a residual connection with LN | L Attention Aterton same as encoder only masked
i _’_} —r J

/

Pasitional
Encoding

input: k!

output: af I | Cutput I
Embeddmg Embedding
concatenates attention from all heads I

nput

Vaswani et al. Attention Is All You Need. 2017.

We'll start from the bottom left and then work our way up.

6.7.3.1 The Encoder The left "network” is the encoder. It takes in the
inputs, embeds them, and then either concatenates and adds it to the positional
encoding (created with whichever scheme we want). With these hidden states
calculated, we input this hidden state sequence into the multi-headed attention
network. We then get that output, layer norm it, and add it to the hidden state
(i.e. a skip connection). This is then passed through a point-wise nonlinear

50

network, layer normalized again, and then added to the original output of the
multi-headed attention network (i.e. another skip connection). The output of
this goes into both the decoder as well as back into the start of the encoder as
hidden states. For the encoder, we do this N times and thus store N layers of
hidden states to input into the decoder.

6.7.3.2 The Decoder The right "network” is the decoder. It takes in either
the ground-truth sequence labels during training or just start of sentence token
at the first timestep during testing. Once again, this sequence is embedded and
positional encodings are added to it. Rather than putting the hidden states into
a multi-head attention network, we must put it through a masked multi-headed
attention network since future timesteps may not exist yet. We add and norm
(i.e. layernorm and skip connection) like with the encoder. Now the outputs
here will be put into multi-headed cross-attention layer where the query comes
from the decoder and the key, value pairs come from the encoder. We add and
norm the output of this, put it through a point-wise nonlinear network, and then
add and norm again. We do this N times as well, and then push the output
through a linear network and softmax to get word probabilities.

6.7.3.3 Other Details In the paper that proposed this, Attention Is All
You Need, they set N =6, d = 512, and had 8 heads. So for the multi-headed
attention network, since the inputs would be size 512, the key, value, and query
vectors would have 512/8 = 64 since there are 8 heads. Then the output of
the attention network would be 8 heads of dimension 64, so after concatenating
them together we get back to dimension 512.

6.7.4 Why Transformers?

6.7.4.1 Downsides One downside to transformers are that attention com-
putations are technically O(n?). For the first issue, the O(n?) isn’t really a huge
issue because most of the network is not spent computing the dot products. In
other words, most of the computation is done in O(n) and the O(n?) section is
comparatively much smaller. Another downside is that the network is somewhat
complicated to implement. So this make it a bit tricky to work with as well as
require some hyperparameter tuning to get it working well.

6.7.4.2 Upsides Transformers have really good long-range connections, since
every timestep is connected with a jump of length one. They are also easier to
parallelize since the entire encoder is entirely parallelizable. In practice, trans-
formers can be quite a bit deeper than RNNs. As a result, transformers seem
to work much better than RNNs and LSTMs in many real cases.

o1

6.8 Word Embeddings
6.8.1 Word2Vec

We want a good way to represent words as vectors to be inputted into our
language models. We want these vector representations to be meaningful in the
sense that vectors corresponding to similar words should be close together. The
basic principle to word2vec is that for each word, its neighbors are close under
this representation. So for each word in a dataset (i.e. the ”center word” c),
we will attempt to maximize the probability of its neighboring words (i.e. the
”context words” o) given the center word. More formally, we want

exp(ug ve)

weV exp(uve)

argmax p(o|c) s.t. p(ole) =
U yeees Uy, UL yeeeyUn Z
Note that for the ith word, it has two representations: u; and v;, for context
word representation and center word representation respectively. Having two
vectors instead of one makes optimization easier for the softmax. At the end,
we can average u; and v; to get our representation of word i. Also, the radius
for context words can be set to something like 5.

We have one small issue in that the denominator of p(o|c) is really costly to
compute since it requires summing over the entire dataset. Instead of summing
over the entire dataset, we can instead make the optimization problem into a
binary classification problem. So instead, we have

1
— (T) —
p(0|0) - U(uo UC) 1 + eXp(—u?;vc)

We also need to add in examples of o that not the right word for ¢ otherwise
the optimum for the objective function would involve huge u; and v; such that
all the binary classifications return true:

p(-ole) = o(—ugve)

Our new optimization problem is now:

argmax Z(log p(o|c) + Z log p(—w|c))

UYL yeeeyUp V1 y..., U
1500y Un,VUly...,Un c,0

where w are random words that are not context words. Condensing everything
together, our optimization problem is:

argmax Z(log o(ulv.) + Zlog o(—ulve))

UseeyUn, VL Un 0

6.9 Pretrained Language Models
6.9.1 ELMo
ELMo is a bidirectional LSTM model used for context-dependent embeddings.

92

Forward LM Backward LM

— —

hes | A5
— — — —
I N oot
he hyYe
— — - -~
t Tt t Tt
ry T2 T3 ry To T3
A cute puppy A cute puppy

It consists of a forward and backward LSTM trained on a large corpus of unla-
beled text data, and

L
ELMO; =~ w;[h, hpy]

i=1

The ELMo representation of the word embedding is concatenated as input into
the downstream task. This provides a context specific and semantically mean-
ingful representation of each token. Note that we have both a forward and
backward language model since context both before and after the word may be
important for contextual representations of the word. A small additional note is
that the weight v and w; are typically made to be learnable in the downstream
task as well.

6.9.2 BERT

6.9.2.1 Training BERT BERT is a transformer language model used for
context-dependent embeddings (i.e. ELMo but with transformers). It is what
is used for most language tasks today. BERT is essentially the ”encoder” part
of a transformer with 15% of inputs replaced with [MASK]. The issue with just
using the encoder part of the transformer (i.e. using self-attention) is that the
language model can trivially learn to access the right answer at time ¢ from the
input at time ¢ + 1. So by replacing words with a mask token, we are asking
BERT to fill in the missing words and in doing so, create a good representation.
The self-attention layer makes BERT bidirectional. A diagram of BERT is
attached below:

93

ﬁp Mask LM Mask LM \
> as *

LJ) o)) ()
BERT
[fen |l & | [& [B[&] [&]
= r—iir o
). GO (=)
l_'_l I_I_l
Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

BERT also has two sentences as input since many downstream tasks require
processing two sentences such as question answering. From the diagram we
can see that, Masked Sentence A has a Mask LM output and Masked Sentence
B has a MASK LM output. Reconstructing all tokens at each time step forces
learning context-dependent word-level representations. During training, we also
randomly swap the order of the sentences 50% of the time. The output from the
first [CLS] token, NSP, is a binary classifier output that predicts whether the
first sentences follows the second sentence or precedes it. This forces learning
sentence-level representations.

6.9.2.2 Applying BERT to Downstream Tasks For downstream tasks,
we now take this pretrained BERT model, put a cross-entropy loss on the first
output, and finetune the whole model end-to-end on the new task. Below, we
see four example downstream tasks:

Cass
Label

0)
BERT

=] (=]

C

Sersence 1 Sentenca 2 Sagle Sanience

classification tasks

{a) Sentence Pair Classification Tasks: {b) Single Sentence Classification Tasks:
. . . MNLI, QQP, QNLI, STS-B, MRPC, S8T-2, ColA
highlight which RTE, SWAG
span of paragraph

contains answer

finetune named entity
label for each position

(person name, location,
other categories)

o O o o o
(=) E
Oveston Fararn S Sernce

(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks
SQUAD V1.1 CoNLL-2003 NER

o4

The top two examples are classification tasks. For these tasks, we simply replace
our first output loss to be a class label classification loss (no losses on any other
outputs). The bottom left example is a question answering task, where we want
to highlight where in the paragraph the answer to a question is. So here, we
put losses on the paragraph output. For the bottom right example, we want to

tag each word of a single sentence with some category (e.g. verb, noun). To do
this, we put a loss the sentence outputs.

6.9.2.3 Getting Features from BERT Similar to ELMo, we can also get
features from the encoding layers of BERT and pass that in with the input.
Since BERT has 12 layers, we have a choice in selecting which layers we want
to use.

6.9.3 GPT

Text generation isn’t really that great with BERT since it uses self-attention
to fill in missing words. Here, we can use something like GPT, which is the

decoder part of the a transformer (i.e. it uses masked self-attention, so it is a
one-directional forward transformer).

o Y2 Us. U4

1
]
¥
1
'
1
]
T ‘ I
]
1
1
1
\

position-wise nonlirear
network

YRR

masked self-attention

—_—
| cmmmmm

—_
e

repeated Nx

I{ II I] Tl
Po| P1y P2y P33

As a side note, OpenAl GPT-3 is a newer version of OpenAl GPT-2 with more
layers.

6.9.4 Summary

OpenAl GPT ELMo

bidirectional transformer one-directional transformer bidirectional LSTM
- OK representations

- can’t generate text - OK representations (largely supplanted by BERT)

96

7 Reinforcement Learning

7.1 Imitation Learning

Note that imitation learning isn’t part of RL, but provides good context for it.

7.1.1 Prediction to Control: Challenges

Prediction (e.g. image classification) assumes that the data is distributed i.i.d
and the objective is to the predict the right label. On the other hand, control
(e.g. autonomous driving) may not be i.i.d. Instead, each decision can change
future inputs and the objective can be more abstract: to accomplish a task.
Unlike prediction problems where there is ground truth supervision, control
problems may have high-level supervision (e.g. navigate to location).

7.1.2 Terminology

In RL, we have states, observations, and actions. States are everything an agent
needs to know about the system. If an agent at a given state takes an action, the
environment will output probability distribution of next states given that (state,
action) pair. Observations are observations of the state. For this reason, states
are thought of as fully observed while observations are thought of as partially
observed. The goal of RL is to find the optimal policy, which is a mapping from
states to actions, given an agent moving in an environment. As an example,
states could be a car’s position, velocity, acceleration, etc. while observations
could be images of the car moving. Actions would then be the steer, throttle,
and brake of the car.

s; — state
0, — observation mg(ay|o;) — policy
a; — action my(ay|s;) — policy (fully observed)

In RL, we assume states follow the markov property. In other words, s;|s;_1
is independent of s; where 7 < i — 1. In other words, if you know the current
state, previous states won’t help predict future states. Observations don’t obey
the markov property.

o7

@),

larkov property
independent of s;_

s
\-2/ p(St+1/se,ar)

p(St+1/8t,a)

7.1.3 Behavioral Cloning and Distributional Shift

Behaviorial cloning, or imitation learning, is just using supervised learning for
control problems. For instance, an observation is the car’s camera and the
action is turning left or right, and we are given ground truth supervision. In
theory, this doesn’t work because we have a distributional shift problem, where
the input distribution shifts from true strings from training to synthetic strings
at test time. In other words, our policy will venture into states that it has never
seen before in the training data and make increasingly poor decisions as the
error compounds.

7.1.4 Mitigating Distributional Shift

So the problem we have right now is that paata(0:) # pr,(0r). But maybe we
can make our policy mg(at|os) very accurate such that paata(0:) = par, (01).

7.1.4.1 Non-Markovian Behavior One possible reason for error is that
the behavior at some timestep depends not only on the current observation. So
conditioning on all past observations can help reduce error. In other words, we
want mg(at|o1,...,0:) instead of mg(a¢]or). One idea for doing this is to use a
RNN, LSTM, or Transformer process the sequence of observations.

7.1.4.2 Multimodal Behavior Another reason for error is that the agent
can have many valid action sequences given an initial state. But upon averaging
these valid action sequences, which learned policies may learn to predict, the
action becomes invalid. For instance, a car can swerve left or right around an
obstacle, but the average, going straight, is not a valid action. There are three
ways to solve this issue:

1. Output Mixture of Gaussians: we can have our policy have n heads,
each policy learning a w;, ¥;, and w; so that m(alo) = >, wiN (u;, X;).
This can be trained by optimizing the log likelihood of these Gaussians.
The issue with this is that in high dimensional spaces, we have need an
exponential number of gaussian elements to approximate the higher di-
mensional distribution. So if we don’t have enough heads, this solution
may fall flat.

2. Latent Variable Models: Given a state, the reason we have different
actions is due to a piece of information not present in the observation.
These unknown variables are called latent variables, which will be passed

98

in with the observation to the policy. During test time, the latents will be
sampled randomly. During training time, the latent variables can be deter-
mined using things like conditional variational autoencoders, normalizing
flow/realNVP, and stein variational gradient descent. The former two
topics will be covered later.

3. Autoregressive Discretization: The third way to represent multimodal
distributions is to discretize the actions because a softmax can represent
multimodal distributions. The issue is that the number of bins is expo-
nential with respect to the action space size. Autoregressive discretization
discretizes one dimension at a time. For instance, our model first predicts
a distribution over the binned first element of the action vector. This
discrete sample is then passed into the next network, which predicts the
distribution of the second element of the action vector, and so on. At test
time, we sample each action element according to its predicted softmax
distribution.

7.1.4.3 Dataset Aggregation (DAgger) The goal to DAgger is collect
training data from pr,(0:) instead of pgata(0:). The algorithm is:

Algorithm 9 DAgger

1: while some stopping condition is not satisfied do

2: Train mg(at|os) from human data D ={o1, a1, ...,0n,an}.
3 Run 7p(at]os) to get dataset D ={o1,...,0n}.

4: Ask human to label D, with actions a;.

5. Aggregate: D+ DUD,

6: end while

The intuition for why this works is that the more we aggregate the datasets,
the closer paata(0:) gets to pr,(0t).

7.2 Introduction to Reinforcement Learning

Reinforcement learning is built around a Markov decision process (MDP), where
we have M = {S, A, T,r}. Our reward function, r, maps states, S, and actions,
A, to reward values. Our transition operator (a.k.a transition probability, a.k.a
dynamics) gives the probability of a next state given a state and action. So our
MDP looks like this:

51 S2
O])(St+| ISf, at) -U])(St+l ‘St.at)

A partially observed MDP is similar to the MDP above but with &£, our emission
probabilities p(o¢|s¢) and our observation space @. Our POMDP looks like this:

99

The goal of RL is not to maximize rewards greedily, but to maximize rewards
over time. In other words, our optimal policy is

0* = arggnax Erpo(r) [Z (8¢, ay)]

t

where

pe(T) :p0(317a17~~ STvaT at|3t St+1|5t7at)

HEH

7.3 REINFORCE [Introduction to Policy Gradients]

REINFORCE is a policy gradient algorithm, which essentially is gradient ascent
on J(6). Below we will detail the algorithm and the derivation.

7.3.1 Objective Function

Looking at our optimization problem,

0" = argmax E. ., (| E r(s¢, ar)]
0
t

, we can approximate J(0) = E;p, () [>_, r(s¢, a¢)] with

1

In other words, we run the policy NV times, get the total reward, and average
them together. For shorthand, we will say that r(7) =), r(s¢, a¢) so we have

J(0) = Errpy(n) [r(7)]-
7.3.2 Derivation
We know that

SO
VoJ(0) = /Vgpg(T)r(T)dT
A convenient identity we can use to break down this form is:

Vope(T)

po(T)Velog(pa(T)) = pa(T) ()

= Vpo(T)

60

Applying this identity in reverse, we see that

VoI (0) = / Po(7)Volog(po (1)) (7)dT = E) [Vslog(po (7)) ()]

To calculate Vylog(pe(7T)), note that

=

po(T) = po(s1,a1,...,s7,ar) = p(s1) | | mo(as|se)p(si41]se, ar)

t

1

T
log(pa(7)) =log(p(s1) + > log(mwa(als:)) + log(p(se1]se, ar))
t=1
T
Volog(ps(7)) = > Velog(mo(arls))
t=1
SO
T
VoJ(0) = Erpy(r) [(Zv(glog mo(at)st)) (ZT st|az) >1
t=1 t=1

We can approximate Vy.J(0) with

T
VoJ(6 NZ(ZV@log o (a; ¢]Sit) ><Zr s”|a”>

Once we’ve computed this gradient, we can just do gradient ascent:
0+ 0+ aVy J(@)

We have just described the REINFORCE algorithm, which can be summed up
as:

Algorithm 10 REINFORCE
1: while some stop condition is not satisfied do
2: sample {7} from 7g(ay|s;) (i.e. run the policy)

3. Calculate VoJ(0) ~ & Zivzl(zz;l Vlog(ma(as,

) (i 7 (sidlai)

4 0+ 04+ aVeJ(0)
5. end while

7.3.3 Intuition

Note that for MLE supervised learning,

VoJur(6 Z <ZVglog We(aztszt))>

i=1 t=1

61

So policy gradient is essentially, in terms of implementation, just MLE but with
a 23:1 r(st|a:) weight for each rollout. In other words, positive reward is made
more likely and negative reward is made less likely. So, in practice, REIN-
FORCE is basically learning by trial and error. Also note that REINFORCE
works for partially observability as well, so we can also have

| XN T T
VoJ(0) ~ i (ZV@log 7o (i t]0i 1) > (Zr Sitlai) >
=1

i=1 t=1

7.3.4 Making REINFORCE Work

The current implementation of REINFORCE never works, but we can make
some additional improvements to get it to sometimes work.

7.3.4.1 Causality Currently, we have

T
Vod(6 z (zwog (rofsalsis)(z |>
t=1

t=1

If we distribute our reward sum in, we have

N T T
Vo J(0 Z Z Viglog(me(ailsie)) (> r(&,yl%,y))

t'=1
It turns out that in expectation, this is the same as

N

T T
Vo (0) ~ %Z > Volog(mo(ailsi)) (> r(siyt/|ai7t/)>

i=1 t=1 PR

(***) This is because for t < ¢/, the policy at time ¢’ cannot affect reward at time
t. This estimator is now actually better because, even though in expectation
the rewards taken out always integrate to zero, for a finite number of samples,
our sampling error might influence our gradient. By zeroing out this noise, we
have decreased the variance of our estimator. This estimator is always better.
As a small note, we call Qi,t = ZtT,:t 7(84,4|a;v) the "reward to go”, so

VGJ X = ZZVQIOg 7Tg az t|81 t))ta
=1 t=1

7.3.4.2 Baselines In our intuition subsection, we noted that REINFORCE
makes positive reward trajectories more likely and negative reward trajectories
less likely. However, if all our rewards are positive, we run into a clear problem.

62

Instead, we want to make trajectories more likely not if their reward is positive,
but if their rewards are better than average. So instead of

VoI (0) ~ + Zvelog mo(7)r ()

we have

Vo J (0 ZVglogm; r(r) — bl st b=

HMZ

Also note that Vylog(mp(7)) is shorthand for thl Vglog(m(aiﬁﬂsi,t)) and r(7)
is shorthand for Zthl (8 t]@it)-

It turns out that subtracting the baseline is unbiased in expectation. This is
because

E[Velog(mg(T)b] = / 7o (1) Volog(mg(7))bdT

= / Vomo(r)bdr

By subtracting the mean, we are then reducing the variance of the estimator
and making the estimator more accurate. As a side note, the average reward is
not actually the best baseline to use, but it is pretty good.

7.3.5 Off-Policy Learning

REINFORCE is an on-policy learning algorithm because at each iteration, we
need to rerun the new updated policy in the environment. This can be extremely
inefficient. Instead, what if we want to do is off-policy learning, where we don’t
have samples from my(7) but some 7(7). To do this, we must first understand
importance sampling.

7.3.5.1 Importance Sampling (IS) We can rewrite the expectation over
one distribution as the expectation over another as such:

7.3.5.2 Policy Gradient with IS With this in mind, we can rewrite J(6)
in distribution of 7(7).

ﬂm:awm”wﬂm]

mmnimmmmmﬂm%gm]
! p(s1) TTr—y 7(aclse)p(ses1lse, ar)
[Ty 7l se)

= ETN??(T) 7:((7_7-))7"(7)]

Now that we have rewritten J(f), let us estimate J(6’) given some rollout of
policy (7).

o (T
J(el) = ETN‘ITQ(T) 71'99((7'))71(7—)‘|
Vormg (T
wwm:aww)iﬁghm]
—Enr) Ty (T)Vg/log(w@,(T))r(T)
I 6(7)
[7o (ag|s)
=E M) (v ,10 , |) (>]
T (T) olog(mgr (at|st) T(S¢t, at
(2 _(tl:[l Wg(at|3t) tz; ;
_E | ﬁwe/(atbt) XT:V log(my (ax]))XT: (N lty)
= Ermg(T) 11 Wie(aﬂst) — or1og o (a|st t/:tr Sy, Qyr y causality
SNND ST () EACLINYE MY () QAT
= Br~mo(r ’ T’ 7y Ay —_—
o(7) = or10g (e (at|St P o(az]s) 2 'y Qt Py To(av|5v7)

It turns out that after deleting the importance weights for future trajectories,
we still have a valid policy gradient:

T oo (aglse)) [
ZVg/log(m)/(atst))< 11 M) (Zr(sy,am)ﬂ

t=1 t'=1 t'=t

J(0") = Errong(r)

The reason why this is valid was not explained in class, so I will leave a mark
here for if I decide to come back to prove this later (***).

7.3.5.3 First-order Approximation for IS One issue is that our impor-
tance weights from timestep 1 to t become degenerate exponentially fast. So

64

instead, we can write out objective differently. Instead of writing it as an ex-
pectation over trajectories, we can write it as a expectation over (state, action)

marginals. Then we can compute an importance weight over these marginals
)

7-[-9/(87, ty Qg t)

To\Sit, Qit

))

Vo J(O) ~ Volog(mor (ait]sis)) Qi

2| =
M-
[M]=

©
Il
s
~
Il
-

9’(Sz,t) 770’(6% t| lt)
mo(si,t) mo(aielsie)

Vorlog(mer (ai szt))ta

Zl\lH
M=
MH

o
Il
_
-
Il
-

Y’ (a it

Sit) .
————Vyl Hag s .
7o (@i, t|sz t) Vorlog(mo (aiilsii)) Qi

Q

=z =
M=
M=

I
-

t

Il
_

?

For the last line, notice that our estimator is no longer unbiased. But if § and
0" are very close together, the error can be bounded (***).

7.3.6 Policy Gradient in Practice

Policy gradients are high variance, so more samples and larger batches will be
needed in practice due to gradients being really noisy. Tweaking learning rates
will also be harder, and adaptive step-size such as ADAM become much more
important. Policy gradient (REINFORCE) can be used in any setting where
we have to differentiate through a stochastic but non-differentiable operation.

7.4 Actor-Critic [Policy Gradients Formalized]
7.4.1 Improving Policy Gradient

Without accounting for baseline, our policy gradient is:

N T

1 .
Vo (0) ~ > D Volog(mo(ailsi.) Q7

i=1 t=1

Our reward-to-go, Qiyt is a one-sample estimator 25:1 (8, a;). What we
really want is Qi’t ~~ ZtT,:t Ex, [r(sy,ar)|se, ar], which is the true expected
reward-to-go. Then our policy gradient becomes:

VeI (6 ﬁgzwm@mmmmmg

where Q(s¢,ar) = Zt, _+ Expr(ser,ae)|s¢, ar]. We now need to account for the
baseline, which is by = % Z Q(sit,a;¢). In expectation, we define this as
V(St) = E(Lf,NTI'@((Lf,‘St)[Q(St7a’)} S0 then
X
Vo (0) = + ; tz—:l Volog(mo(ai,i|si,))(Q(sit, ai) — V(sit))

65

We call A(s;t,a:1) = Q(sit,ait) — V(si¢) the advantage, which is how much
better the Q-value is than the average value at state s. So then,

Vo (0 Z Z Volog(ma(ait]sit))A(sit, ait)

7.4.2 Terminology

o Q7 (s,ap) = sz=t Ex,[7(se, ae)|se, ar] is the Q-function, which is the
total reward from taking a; in s; in expectation.

o V7™(s1) = Eqmmg(ar)s) Q7 (5¢,a¢)] is the value function, which is the ex-
pected value of the Q-function where the actions are distributed according
to the policy .

o A™(sy,a) = Q™ (sg,ar) — V™(sy) is the advantage function, which is how
much better a; is than the average action of state s;.

o Vo (0) ~ £ 3N, o1, Vielog(m(aiylsie)) AT (sis, i) is the policy gra-
dient

Note that our old policy gradient has A™(s;,ai) = ZtT,:l r(Si,ai) — b,
which is unbiased but is a high variance single-sample estimate.

7.4.3 Policy Evaluation (i.e. Value Function Fitting)
Note that

T

Q™ (s¢,at) = r(s¢,a¢) + Z Ero[r(se7, ae)|5¢, a)

t/=t+1
T(Sta at) + Est+1~p(st+1|st,a1) [Vﬂ-(st-i-l)]
~r(se,ar) + V7 (St41)

The last approximation is a single-sample estimate of s;,11, but it is not a single-
sample estimate of the rest of the trajectory because we are using V™. So we
have a little approximation error when we do this. But this is very convenient
because now

A" (sy,a1) = (s, ar) + VT (si11) — V7 (s¢)

So one idea is that we only have to fit the value function, and then we can cal-
culate the advantage function directly from the value function. So we will have
one network with parameters 6 be the policy and one network with parameters
¢ try to approximate the value function.

66

7.4.3.1 Monte Carlo Policy Evaluation Monte Carlo policy evaluation
is just what we did with REINFORCE where we just sample trajectories and
use these to update our policy. In this case, we can approximate

T

V7 (s) = Z r(sp, ap)

t'=t

If we have multiple samples, we have

LT
V7™ (sy) = i Z Z r(sy, ar)
i=1t'=t

but this is typically not going to happen since normally, we can only initialize
our agent at the initial states and roll it out. This means we can’t initialize our
agents at intermediate states.

Thus, we will train our value function network with training data:

{(Si,t7 yi,t)}

T

s.t. Y = E 7(Sitr5 Qi gr)
t'=t
Our supervised regression loss will be

L) = 3 IV (s0) = wil?

The neural network will average together values of nearby states, so we will get
better value function estimates then directly plugging in the values into policy
gradient.

7.4.3.2 MC Policy Evaluation with Bootstrapping Our current Monte
Carlo target is y; ¢+ = ZtT/zt r(siv,a;), but our ideal target is

T

Yit = Z By [r (517, arr)[si.4]

=t
~r(sit,ait) + V7 (Si,641)
~ (i, ait) + Vi (Sit+1)

The last line is called bootstrapping, where we directly use our previous fitted
value function in our label. So our new training data is:

{(Si,h yzt)}

st yie = 1(8it, Qi) + V(;r(si,tﬂ)
Our supervised regression loss will be

L) = 3 IV (s0) = wil?

67

7.4.4 Actor-Critic

The term actor-critic refers to the fact that we have two neural networks now:
the policy which is the the actor and the critic which is the value function, which
criticizes the policy and tries to estimate its value. Actor-critic is really just
REINFORCE but with another network estimating the value function rather
than directly fixing the value to be the single-sample estimators.

7.4.4.1 Batch Actor-Critic We can sample trajectories in batches, update
the value function network, calculate the advantage, use it compute the policy
gradient, do gradient descent, and then repeat.

Algorithm 11 Batch Actor-Critic

1: while some stop condition is not satisfied do

2. Sample {s;,a;} from mg(a|s;) (i.e. run the policy)
3. Fit V] (s) to sampled reward sums

4: Evaluate A™(s;, a;) = r(s;,a;) + 'yf/(;r(s;) - Vg(sl)
5. Calculate Vo J(0) =), Volog(mg(ai|s;))A™ (54, a;)
6: 0+ 0+aVyJ(h)

7: end while

In step 2, we fit ‘A/df (s) with bootstrap (i.e. Monte Carlo policy evaluation with
bootstrapping).

7.4.4.2 Discount Factor Also note that we have discount factors, -y, since
without them, V(;T can become infinitely large as episode length gets longer. So
by discounting, we are really saying that rewards sooner are better than rewards
later. Discount factors are between 0 and 1. Something like 0.99 works well.
With the discount factors, we still have a valid MDP because we can think about
at every timestep, we have a 1 — v probably of entering the death state.

}6(5! |S:~ a) = ’:"p(sf |5! a)

7.4.4.3 Online Actor-Critic A fully online actor critic can actually just
update the actor and critic on each action of the policy.

68

Algorithm 12 Online Actor-Critic
1: while some stop condition is not satisfied do
2: Take action a ~ my(als), get (s, a, §’, 1)
3: Update Vg using target r + Vf/df (s"
4: Evaluate A™(s,a) = r(s,a) + ’yffg(s’) - A(;'(s)
5
6
7

Calculate VyJ(0) ~ Vglog(mg(als))A™ (s, a)
0 0+aVeJ(0)
end while

In reality, SGD with a single sample is not very stable, so we actually could use a
multithreading process where different threads collect a sample and we average
over those samples to get a minibatch. This is called asynchronous-advantage
actor critic.

7.4.4.4 Architecture Design A simple architecture choice is to have two
separate neural networks: one maps states to scalar values (i.e. value function),
and one maps states to distributions of actions (i.e. policy). This design is
simple and stable, but it can a little inefficient since there are no shared features
between actor and critic.

two network design

A more advanced design is one in which we have a single neural network with
two heads, one with the scalar value output and one with the output being a
distribution of actions.

shared network design

7.5 Policy Iteration, Value Iteration, and Q-Iteration
7.5.1 Policy Iteration

argmax, A™(s¢,a;) is the best action from s, if we follow 7, which is at least as
good as any a; ~ 7(a¢|s¢). So, what if we don’t have a policy network. Instead,
we’ll fix
1 a; = argmax, A" (s;,a
' (ay]se) = ' S, (s, ac)
0 otherwise

This new policy will be as good as 7 (probably better). On a high level, policy
iteration would then just be:

Algorithm 13 Policy Iteration (High Level)

1: while some stop condition is not satisfied do
2: evaluate A™(s,a)

3 set

4: end while

7.5.2 Policy Iteration with Dynamic Programming

But how do we evaluate the advantage function? Let’s start simple. Let’s
assume we know p(s'|s,a) and both s and a are both discrete and small. We
can perform the bootstrapped update:

VW(S) — anﬂ(a|s)[7“($, U,) + ’YESINP(S/‘S)Q) [Vﬂ(sl)]]
Since 7 is deterministic, we have
Vﬂ(s) — 7’(8, W(S)) + ’VEs’Np(s’\s,‘fr(s))[Vﬂ(s/)]

So our policy iteration algorithm would look like:

Algorithm 14 Policy Iteration with Dynamic Programming

1: while our value function has not converged do

2. evaluate V7 (s) <= (s, 7(s)) + YEs p(s/|s,n(s) [V (5")]
3 setwm+ 7

4: end while

7.5.3 Value Iteration with Dynamic Programming

Recall that A™(s;,a;) = r(s;, a;) + YE[V7(s])] — V™ (s;) and

1 a = A
(anse) = at argmaxat (8¢, az)
0 otherwise

70

We see that the the V™(s) term doesn’t depend on a, so

argmax A™ (s;, ay) = argmax Q" (s¢, a;)
at at

So we can actually skip the policy and compute values directly.

Algorithm 15 Value Iteration
1: while our value function has not converged do
2. set Q(s,a) « 7(s,a) +vE[V(s')]
3 set V(s) «+ max, Q(s,a)
4: end while

7.5.4 Fitted Value Iteration

In most problems, our state and action space will be too big to store in a tabular
form. So we will have a neural network that maps states to values.

Algorithm 16 Fitted Value Iteration
1: while some stop condition is not satisfied do
2 set y; < maxg, (r(s;, a;) + vE[V,(s))])
3 set ¢ argming 5 Vs (s:) — will?
4: end while

7.5.5 Fitted Q-Iteration

However, we have an issue here. There is no way to evaluate the max without
knowing the transition probabilities. To solve this, instead of fitting V7 (s):

Vﬂ(s) < 7”(8, W(S)) + 7Es’~p(s’\s,7r(s))[Vﬂ(s/)]
we will fit Q™ (s, a):
QW(Sa Cl) — T(Sv CL) + fYES’Np(s’\s,a) [Qﬂ- (S,7 71-(3/)]

In doing so we can approximate Ey (s (s,x(s)) [Va(5;)] & maxy Qy(s], aj).

1) "

Algorithm 17 Fitted Q-Iteration
1: while some stop condition is not satisfied do
2: set y; < maxg, (r(s;, a;) + YE[Vs(s))]) s.t. E[Vg(s))] &~ maxy Qu(s], al)
3. set ¢ < argmin % > Qe (sisa:) — vi||?
4: end while

This turns out to work for off-policy samples (unlike actor-critic), because the Q-
function is conditioned on action. We want only have one network, so there is no
need for a high-variance policy gradient. The downside is that this algorithm
loses the convergence guarantees for non-linear function approximation that
policy gradients have (***).

71

7.5.6 Fully Fitted Q-Iteration

Algorithm 18 Fully-Fitted Q-Iteration

1: collect dataset {(s;, a;, s}, r;)} using some policy
2: for K iterations do

3 set y; < 7(s4,a;) +ymaxy Qu(s;, a;)

4 set ¢ < argming 5 3, [|Qp(si, ai) — uil®

5: end for

qu(s:a)

parameters ¢

7.6 Q-Learning
7.6.1 Online Q-Iteration

Now that we know fully-fitted Q-iteration, we can also implement the online
version (a.k.a Watkin’s Q-learning), which takes one step in the environment,
observes one transition, computes one target value, and then takes one gradient
step of SGD.

Algorithm 19 Online Q-Iteration
1: while some stop condition is not satisfied do
2: take some action a; and observe (s;, a;, s5,7;)
li

3 set y; =1(s;,a;) +ymaxy Qu(s], a;)

4 set ¢ ¢ — O‘%(Si»ai)(Q¢(Sia a;) = yi)
5: end while

This forms the foundation of deep Q-learning, but we need to add some fixes to
get this working for deep learning.

7.6.2 Exploration with Q-Learning

One issue we have is that we only choose actions with respect to the argmax
policy. This is an issue because our initial Q-function is really bad, it is possible
we choose the same bad action and never seen the rest of the environment. So
instead, we can have some exploration strategy. A simple one is the epsilon-
greedy strategy where

_J1—e€ a;=argmax,, Qu(st, ar)
m(aclse) = —— otherwise
[A[-1

72

In other words, we choose the argmax most of the time. But sometimes we will
choose another random action for exploration. A more sophisticated strategy is
Boltzmann exploration where:

m(ae|st) oc exp(Qg(st, ar))

This strategy allows for the agent to rarely go to actions it knows is bad and
most commonly go to action it knows is good.

7.6.3 Q-Learning with Replay Buffer

Another issue we have is that in our online Q-Iteration, our samples are corre-
lated. This is different from SGD where we assume the data is chosen i.i.d. Since
sequential states are strongly correlated, it is possible our Q-value network will
overfit to different chunks along a training trajectory. To solve this, we intro-
duce replay buffers, which stores a dataset of the agent’s most recent trajectories
(old trajectories are thrown away when the replay buffer hits a threshold limit).
Then we will do gradient descent on a batch of the replay buffer rather than a
sample:

Algorithm 20 Full Q-Learning with Replay Buffer

1: while some stop condition is not satisfied do

2: collect dataset {(s;,as,s},r;)} using some policy, add it to B

3 for K iterations do

4: sample a batch (s;, a;, s;,7;) from B

5 b —a X, (s,) (Qolsiai) — [r(si, ai) + ymaxy Qu(s), b))
6 end for

7: end while

7.6.4 Q-Learning with Target Networks

We have one more issue in that our QQ network changes every gradient step, so
our target changes every gradient step. As a result, it is possible that this type
of "gradient descent” won’t converge, since our network is sort of ”chasing its
own tail”. The solution to this is to save an old version of the model for gradient
descent and take multiple gradient steps before updating a newer version of the
model for gradient descent. We call this old version of the model to be used in
the loss function for gradient descent the target network.

73

Algorithm 21 Q-Learning with Replay Buffer and Target Network

1: while some stop condition is not satisfied do

2: save target network parameters: ¢’ < ¢

3: for N iterations do

4 collect dataset {(s;,a;, s;,7;)} using some policy, add it to B

5: for K iterations do

6 sample a batch (s;, a;, s, 7;) from B

7 =X, G (si,0:)(Qu(sir ai) — [r(si, ai) +ymaxe Qg (s}, al)])
8 end for

9: end for

10: end while

7.6.5 Classic Deep Q-Learning (DQN)

Using target networks and replay buffers, we can construct the classic DQN:

Algorithm 22 Classic Deep Q-Learning (DQN)

1: while some stop condition is not satisfied do

2: take some action a; and observe (s;,a;, s, r;), add it to B

3: sample mini-batch (s;,ay, s}, 7;) from B uniformly

4: compute y; = 7; +7maxq; Qg (8}, a’;) using target network Qg
5

6

7

d
¢ d—a>; 2e(s;,a,)(Quls),05) — y))
update ¢': copy ¢ every N steps
end while

This is essentially Q-Learning with Replay Buffer and Target Network with
K=1.

7.6.6 Q-Function Network Representation

We have a choice how we want to represent the Q-function network. One option
would be to input state and actions and output a scalar value that represents
the Q-value. This is more common for continuous actions.

Another option would be to input just the state and have multiple heads as
output for each action. This is more common for discrete actions.

74

7.6.7 Off-Policy Actor Critic

Taking the max over continuous actions can be very nontrivial. One solution is
to use off-policy actor-critic. Note that normal actor-critic is only an on-policy
algorithm, but we can use Q-functions to get around this:

Algorithm 23 Off-Policy Actor-Critic
while some stop condition is not satisfied do
take some action a; and observe (s;,a;, s;,7;), add it to B
.) .
sample mini-batch (s, a;, s%,7;) from B uniformly
compute y; =r;j + an;Nﬁé(aHs;)[QQy (s, a})] using target ¢’ and 60’

1:
2
3
4
5 ¢ d—aX; 2e(s;,05)(Qols)r a5) — ;)
6.
7
8:

0«0+ B>; VoEaury(als;)[Qolsj, a)]
. update ¢’ and ¢’ every N steps
end while

7.6.8 Q-Learning in Practice

Q-Learning takes some care to stabilize, so the recommendation is to first test
on easy, reliable tasks first. Large replay buffers tend to help improve stability.
Q-Learning also takes time due to its exploration challenge, so it might be no
better than random for a while before rapid improvement. For this reason, it
helps to start with high exploration (epsilon) and gradually reduce.

7

8 Unsupervised Learning

8.1 Autoregressive Generative Models

Autoregressive generative models are ”language models” for other types of data,
although the more accurate way is to say that language models are a special
type of autoregressive generate models. We can representive autoregressive mod-
els with RNNs/LSTMs, local context models like PixelCNNs, or transformers.
They provide full distribution with probabilities, are conceptually very simple,
but are very slow for large datapoints such as images so they are generally
limited in image resolution. The main principle behind training autoregressive
generative models is for the unlabeled dataset made up of datapoints x,

—_

. Divide up x into dimensions x1, ..., T,

2. Discretize each x; into k values

w

. Model p(x) via the chain rule p(x) = p(x1)p(x2|z1)p(z3|T1:2). ..

W~

. Use your favorite sequence model to model p(x)

8.1.1 PixelRNN

In a PixelRNN, pixels are generated one at a time, left-to-right, top-to-bottom,
one color channel at a time. In other words, we train on LSTM on the pixels
of an image that is flattened so that it predicts the next pixel (i.e. 256-way
softmax) given what it currently has. Some issues with PixelRNN is that it is
really slow due to the sheer number of pixels in an image. Also, a row-by-row
LSTM might struggle to capture the spatial context (i.e. pixels right above it
are far away). Some idea proposed to get over this is the diagonal BiLSTM,
where we short the connections between hidden states of pixels right above to
the hidden state of the current pixel.

b

oootoo

09000
00000
OC0O®00
O000O0

Diagonal BiLSTM

76

8.1.2 PixelCNN

A PixelCNN is a much faster version of PixelRNN by not building a full RNN
over all pixels, but just using a convolution to determine the value of a pixel
based on its neighborhood. To do this, we will use a CNN but at each pixel,
we mask out that pixel, pixels below it, and pixels to the right. Note that we
must use zero-padding so that we keep the resolution of our output (i.e. the
256-way softmax) to be the same as the resolution of our input image. We
can parallel training now, but we can’t parallelize generation because we need
previous pixels to determine future pixels. Also, it may seem that given a pixel,
we are no longer conditioning on all the past pixels anymore but rather just
the pixels that aren’t masked in its neighborhood. However, since pixels are
generated one at a time, even pixels outside of the neighborhood will influence
our prediction indirectly.

0000
O000O0
(oNeolN NeNe]
0 O

8.1.3 Pixel Transformer

We can use a transformer decoder-style architecture to build a model over im-
ages. Note that in self-attention, all pixels are equally ”close” so we don’t have
the spatial context issue as in PixelRNN. However, the number of pixels can
be huge and attention models can become prohibitively expensive. One idea
is to only compute attention for pixels that are not too far away. So a pixel
transformer uses a modified masked self-attention where it masks out pixels too
far away in addition to future pixels. There are two ways to mask out pixels:
Local 1D Attention is much like PixelRNN but with self-attention while Local
2D Attention is much PixelCNN but with self-attention.

7

LLocal 10 Attention Local 20 Atisnviion

Cuery Block

8.1.4 Conditional Autoregressive Models

We can also have autoregressive generative models that are conditioned on an-
other piece of information. For instance, we can generate images of specific
types of objects or generate distributions over actions for imitation learning
conditioned on the observation. To do this, we encode our context information
and pass it into the first timestep of our autoregressive generative model.

$11 $12 $13 $21 wgz $23

t ot ottt
- W " EH W B

[J.xamo:)]

encoder

8.2 Autoencoders

An autoencoder is a network that encodes an image into some hidden state, and
then decodes that image as accurately as possible from that hidden state. Some-
thing about the design of the model, or in the dat processing or regularization,
must force the autoencoder to learn a structured representation.

78

this is the bit we use for
downstream tasks

encoder hidden decoder
state

8.2.1 Types of Autoencoders

We can force structure in a few different ways:

e Dimensionality: make the hidden state smaller than the input/output, so
the network must compress it

— Very simple to implement

— Simply reducing dimensionality often doesn’t provide the structure
we want. It may actually lump together dissimilar things.

e Sparsity: Force the hidden state to be sparse (most entries are zero), so
that the network must compress the input

— Principled approach that can provide a ” disentangled” representation

— Harder in practice, requires choosing the regularizer and adjusting
hyperparameters

e Denoising: Corrupt the input with noise, forcing the autoencoder to learn
to distinguish noise from signal

— Very simple to implement

— Not clear which layer to choose for the bottleneck, many ad-hoc
choices (e.g. how much noise to add)

e Probabilistic Modeling: Force the hidden state to agree with a prior dis-
tribution

8.2.2 Bottleneck Autoencoder

The classic bottleneck autoencoder does exactly dimensionality reduction.

79

128 dimensions

100x100= ——— “— V—rv—

10,000 dimensions encoder hidden decoder
state

If the encoder and decoder are linear, this exactly recovers PCA. So bottleneck
autoencoders can be seen as ”"non-linear dimensionality reduction”. This could
be useful because dimensionality is lower and we can use various algorithms that
are only tractable in low-dimensional spaces (e.g. discretization). This design
is antiquated, but good to know about historically.

8.2.3 Sparse Autoencoder

In a sparse autoencoder, in addition to the reconstruction loss, we have an
additional loss to encourages our hidden state to be sparse (i.e. most values
are zero). This motivation behind this is that sparse representations are more
structured since there are many attributes in the world, and images don’t have
most attributes.

sparsity loss
L) L)\]
I I [
encoder hidden decoder
state

Note that the dimensionality of the hidden state can be larger than the input.
This is called an overcomplete representation. We may want this because there
may be because a very large number of attributes. There are a variety of sparsity
losses we can employ. A simple sparsity loss is to regularize the hidden states
by the L1 norm. There are other sparsity losses like lifetime sparsity (i.e. force
every dimension of the hidden state to be non-zero in a small fraction of the
images) or spike and slab models.

8.2.4 Denoising Autoencoder

The idea behind denoising autoencoders is that a good model that has learned
meaningful structure should fill in the blanks. There are many variants of this
basic idea, and it is one of the most widely used simple autoencoder designs.

80

For instance, BERT is an example of a denoising autoencoder since it masks

words.
L J L] \ J -
T T T

encoder hidden decoder
state

8.2.5 Layerwise Pretraining

Historically (from 2006-2009), one of the dominant ways to train deep networks
was to use layerwise pretraining. Here, we would train an autoencoder, get
the hidden state representation, train another autoencoder on the hidden state,
and so on. The idea was that each time we train the autoencoder, we make
the representation a little more abstract, disentangled, and lossy. Then the
combination of all these autoencoder encoders will encode the original image
into a much more abstract representation. Then when we want to use these
models to solve some downstream task, we compose the encoders all of these
autoencoders to get a very deep network and then fine-tune end-to-end.

!

LA A

After 2009 or so, we got a lot better at training deep networks end-to-end
due to ReLlU, batchnorm, better hyperparameter tunings, weight initializations
like Xavier, optimizers like ADAM, etc. As a result, autoencoders became less
important.

81

8.2.6 Autoencoders Today

Today, autoencoders can less widely used these days because there are better
alternatives. For representation, VAEs and contrastive learning are used. For
generation, GANs, VAEs, and autoregressive models are used. A big problem
with autoencoders is that sampling (generation) from an autoencoder is hard,
which limits its uses. The variational autoencoder (VAE) addresses this, which
is discussed about later.

8.3 Latent Variable Models
8.3.1 Latent Variable Models

A latent variable deep generative model is usually a model that turns random
numbers into valid samples (e.g. images). The idea is that we have some very
complicated distribution p(x) that we are trying to model. Instead of directly
trying to model this distribution, we can try to model it as a composition of
two very simple distributions p(z) and p(z|z). We can fix p(z) to be a very
simple distribution such as a zero-mean normal, and then we get p(z|z) to be
a normal distribution where the mean and variance is some neural network
function of z. Then, p(z) = [p(z|z)p(z)dz. We are essentially offloading most
of the complexity into the mapping from z to the mean and variance of x given
z, which is a complex deterministic function modeled by a neural network.

p(x)
T
> p(x]2) = N(pan(2), 00n(2))
p(z)

82

8.3.2 Estimating Log-Likelihood

We have our model py(z) and data D = {x1,..,2x}. We then do a maximum
likelihood fit:

1
0« arg;nax N Z log pe(x;)

, which is

1
0+ arg;nax i Z log (/pg(xiz)p(z)dz>

This objective is intractable, so we use the expected log-likelihood.

0 < argznax Z Ezwp(z\x)[IOg pﬁ(wz,)]
Since p(z) can be fixed, we need to learn a p(z|x;) and a p(z;|z). The intuition
for this optimization problem is that we ”guess” the most likely z given x;
from p(z|z;) and pretend that it is the right one. Calculating p(z|x;) is called
probabilistic inference.

8.3.3 Latent Variable Models in Deep Learning

We can choose something simple for z such as N'(0, I). We can then use a neural
network decoder to map z to x: pg(x|z). For generation, we first generate a
vector of random ngumbers (z ~ p(z)) and then turn it into an image (x ~

p(z[2)).

p(z) po(z|z)
N(0,1)

How do we represent pg(x|z)? Option 1 is to assume pixels are continuous-
valued so pg(z]z) = N(ug(2);04(2)). An easy choice is to let o be a constant,
either a learned constant independent of z or chosen manually (e.g. 0 = 1 re-
duces to an MSE loss). Option 2 is to know that the pixels are discrete-valued,
so we could just use a 256-way softmax. This works well, but is slow. Other
choices are discretized logistic or binary cross-entropy.

In terms of architecture choice for the decoder, we could just use a fully con-
nected network, which works well for tiny images or non-image data. A better

choice is to use transpose convolutions.

For training, we have three basic choices:

83

1. VAEs: Perform inference to figure out p(z|x;) for each training image x;
and minimize expected NLL E, (. ,,)[—log p(w;|2)]

(a) sample z ~ p(z|z;)
(b) reduce -log p(z;|z) with SGD
2. Normalizing Flows: Use an invertible mapping z to x

3. GANs: Match the distribution E...,)[pe(z|2)]

8.3.4 Variational Inference

8.3.4.1 Variational Approximation Let’s approximate p(z|z;) by ¢;(z) =
N (pi,oi). Note that the real p(z|z;) can be very complicated, so this can be a
fairly crude approximation. For any choice of ¢;(z), we can construct a lower
bound for log(p(z;)) as such

log(p(z:)) = log / plail2)p(z)dz

z

—tog [plailopto)
p(xi|z>p<z>]

= log Ez~q1,(z) [4i(2)

p(zi]2)p(z)
qi(2)

= Ezwqi(z) [log p(xl|z) + IOg p(z)] - Ez~<]i(2) [IOg QZ(Z)]

= Ezqi(2[log p(wil2) + log p(2)] + H(a:)

Here H is entropy. Before we go on, we will first introduce the ideas of entropy
and KL-divergence.

> E.ngi(2) [log] (by Jensen’s Inequality)

8.3.4.2 Entropy H(p) = —E,pwllog p(z)] = — [p(x)log p(x)dz. In-
tuitively, entropy measures how random a random variable is, or how large
the log probability in expectation under itself is. For instance, a higher vari-
ance (i.e. wide) normal distribution will have a higher entropy than a lower
variance (i.e. narrow) normal distribution. When we look at maximizing
E.~q () [log p(x4|2) + log p(2)] + H(q:), if we only maximize the first part, we
will find a ¢;(z) that is narrowly peaked at the maximum point probability of
p(x;, 2) like below

this maximizes the first part

p(zs,2)

84

By also maximizing the second part, we also make the g;(z) distribution as wide
as possible like below

this maximizes the first part

this also maximizes the second part
(makes it as wide as possible)

8.3.4.3 KL-Divergence

= Equ(z) [log Q(z)] - Ezwq(z) [log p(IE)]

= —E,q(wllog p(x)] — H(q)

Intuitively KL-Divergence measures how different two distributions are, or how
small the expected log probability of one distribution is under another, minus
entropy. Notice that KL-Divergence is always non-negative, and it is zero when p
and g are the same distribution. If we view KL-divergence as the last expression
above, if we were to minimize only the first part of KL-divergence (without
entropy), we end up getting a g(x) that is narrow and peaked at the maximum
probability point of p. When we include the entropy term in the minimization
problem, we see that we are also additionally forcing the ¢(z) distribution to be
as wide as possible.

8.3.4.4 Variational Approximation Continued We currently have

log(p(xi)) = Li(p, ¢i) = Bangi([log p(xil2) +log p(2)] + H(:)

We call £;(p, ¢;) the evidence lower bound (ELBO). A good ¢;(z) is one that
makes the right hand side of the inequality as close to the left hand side
as possible. Intuitively, this occurs if ¢;(z) approximates p(z|z;) well (i.e.

85

Dxr.(g:(2)|lp(2]z)) is low). We can show this rigorously by seeing that
ai(2)

p(z|z:)

qi<z>p<xi>]

p(xiv Z)

DKL(Qi(Z)||p(z|xi)) = EZNQi(Z) llOg

=Enaia) [bg

= —E.vq, (=) [log p(zi]2) +log p(2)] + E.ng, () [l0g i(2)] + E.ng(z)[log p(a4)]
= —E.q,(»)[log p(xi|2) + log p(2)] — H(q:) + log p(x;)
—Li(p,q;) + log p(x;)
log p(%;) = Drcr(qi(2)|lp(2]x:)) + Li(p ¢:)
> Li(p, q:)

So the smaller the KL-Divergence is between ¢;(z) and p(z|z;), the better
L;(p,q;) approximates log p(z;). That means maximizing £;(p, ¢;) will push
up on p(z;), and the smaller the KL-divergence is, the closer £;(p,q;) is to
our objective. So maximizing L;(p, q;) w.r.t ¢; minimizes KL-divergence, and
maximizing £;(p, g;) w.r.t our model p(x|z) trains our model.

8.3.4.5 Classic Variational Inference Knowing this, we can now sketch
our a classic variational inference algorithm:

Algorithm 24 Classic Variational Inference

1: for each z; (or mini-batch) do

2: calculate VyL;(p, g;) by sampling z ~ ¢;(z) and calculating Vo L;(p, q;) =
Vglog py(z4]2)

3 0+ 0+aVeli(p, q)

4: update ¢; to maximize L;(p, ¢;)

5. end for

For updating ¢;, a simple case would be to assume that ¢;(z) = N (u;,04) so
then we can perform gradient ascent on p; and o; by calculating V,,, £;(p, ¢;)
and V,,L;(p, q;). However, the issue with this could be that we have |§] + N x
(|i] + |o;|) parameters where N is the number of datapoints. This could be
enormous.

8.3.5 Amortized Variational Inference

Remember that ¢;(z) should approximate p(z|z;) so we can instead learn a
separate network ¢;(z) = q(z|z;) = p(z|x;).

| 6(ela) = Npo(@). 00(@)

86

In other words, amortized variational inference amortizes the challenges of in-
ference over all the datapoints by using a neural network to perform inference
for us. So now, we have

log(p(zi)) > L(pa(wi2), qg(2|2:)) = Ezngy(z]e,) 108 p(w:]2)+Hog p(2)]+H (gqe(2]2:))

Algorithm 25 Amortized Variational Inference

1: for each x; (or mini-batch) do

2: calculate VoL (pg(z;|2), g4(2|x;)) by sampling z ~ ¢4(z|z;) and calculat-
ing VoL ~ Vylog pe(z;|z)

3: 0+ 0+ aVyLl

4 = op+aVyLl

5: end for

Remember that £; = E.q, (|, [log p(zi]2) + log p(2)] + H(gqs(z|2;)). So how
do we calculate V4L7

8.3.5.1 Policy Gradient Approach L; breaks down into the expected
value term and the entropy term. The entropy of a Gaussian is closed-form
and its gradient is closed form, so we have no problem there. For the expected
value term, we can let r(x;, z) = log pg(z;|2z) + log p(z), so the expected value
can be rewritten as J(¢) = E.q, (z|z)[7(7i, 2)]. Thus, we can just do policy
gradient by computing V.J(¢) ~ <5 >~ Vglog qe(2jlzi)r(xi, 2;). The advantage
to using policy gradients is that it can handle both discrete and continuous latent
variables. However, it has an issue in that policy gradient is a high variance
estimator, so it requires multiple samples and small learning rates.

8.3.5.2 Reparameterization Trick Approach An alternative is instead
to use the reparameterization trick. Notice that

J(#) = Eongy (e [T(24, 2)]
= Bean 0. [r(@i, po (i) + €0 (2:))]
So to estimate V4J(¢), we can sample €1, ..., epr from N(0,1) (although a sin-
gle sample also works well) and calculate V4J(¢) ~ 7 > Vor(m, pg(xi) +
€;04(2;)). Another way to look at it is that
J(®) = Eengy(zley) [l0g po(i]2) +1og p(2)] + H(gs(2|74))

= E.gy(zl2)[108 Do (7i|2)] + Ecng, (212 [l0g p(2)] + H(ge(2]2:))

= Eocgy (22108 po(wi2)] — D (g (2]7:)[Ip(2))

= Bean0.0) 108 po(ilpo(wi) + €0y (2:)] = Dicr(gg(z]2:i)[Ip(2))

~ log po(wilpg (i) + €y (i) — Drer(gs(2|7:)p(2))

The KL-divergence of Gaussians has a convenient analytical form, so taking the
gradient of it is fine. Computing the gradient of the first log term is also just a
matter of backpropagation. For visually, we can see our two networks as such

87

i E’/' ﬂ"f’(:l"’-")\

: fo(xi) + €op(xi) = 2
T og(a) t

¢ e~N(0,1) 4

L — po(xi[2)

All we have to do now is do autodiff on our ELBO to update weights. The
advantage to using the reparameterization trick is that it is very simple to
implement and has low variance. However, it only works for continuous latent
variables.

8.4 Variational Autoencoder (VAE)
8.4.1 VAE

A VAE is exactly the diagram above. Put another way we have our latent prior
z and our input x. We have two networks: an encoder that performs inference
and a decoder that produces x given z.

1]

qs(z]x) = N(ug(x),06(x)) o |? pol(elz) = N(us(2), 00(2))

VAEs can do crazy things like generate new images of people’s faces (i.e. those
faces don’t really exist). Our VAE has the following architecture that we’ve
seen above

i nu’ff’("l"'!-)\

T (i) + eop(xi) =z

[~ os(@i) ="
¢ e~ N(0,1)

with the following objective function:

max > 10g po(wilu(zi) + oo (@) = Drcr(as (2|0 Ip(2))

Notice that the first part of this objective looks like an autoencoder objective.
The second part looks like a penalty on how much g4(z|z;) deviates from our
prior p(z). Intuitively, this allows for at test time, when we sample from p(z),
the decoder will know what to do which these zs. In test time, we simply sample
z ~p(z) and x ~ p(z|z).

88

8.4.2 Conditional VAE
A conditional VAE is a VAE but we replace the z; term with y;|z; (i.e. we're
conditioning on x):

Li = E.q,(zlz:) 108 P(Yil|i, 2) +log p(z|z:)] + H(ge (2|7, vi)
Our network now looks like this:
b uqs(i"a,,y.t)\ i
| op(Tinyi) — '(Lib teop =2z F5

e~ N(0,1)

— po(yilzi, 2)

This is the same as a VAE network except we now pass in x; into our 6 network
as well as our ¢ network if we choose to do so. At test time, we either sample
z ~ p(z) or z ~ p(z|lz;) depending on our design choice. Then we sample

y ~ p(ylzi, 2).

8.4.3 VAEs with Convolutions

For images, simply need to a CNN encoder and FC network to produce the
mean and variance of the latent. We then perform transpose convolutions to
decode our latent and produce a mean and variance for each pixel of our output
image.

64x64x3 30x30x32
14x14x64
6x6x128
/ 256
1024 256 1024

5x5x32 3x3x64 3x3x128
conv conv conv
stride 2 stride 2 stride 2

transpose convolutions

€~ /\/‘(07 I) _J (lndependent) mean and

variance for each pixel
256

8.4.4 B-VAE

Especially for conditional VAEs, our policy may be tempted to ignore the latent
codes, or generate poor samples. Initially z just looks like noise, so it may be
hard to figure out how to use it especially when part of our objective is to make
z look more like our prior distribution. So we have two possible problems:

1. Our latent code is ignored (i.e. pp(x|z) — p(z)) and our reconstructed
image will look like a blurry average image

2. Our latent code is not compressed (i.e. gg(z|x) is very far from p(z)) so
our reconstructed image will be great in training, but upon sampling we
will get garbage. This is because we have essentially learned the identity
function in training.

89

For our first problem, Dx 1 (ge(2]x)||p(2)) is too low because g4 (z|z) =~ p(z). For
our second problem, our KL-divergence is too high because we have too much
info in z and it has deviated from the prior, leading to us just learning an identity
function. What this means we need to control this KL-Divergence carefully to
get good results. So we add a multiplier to adjust regularizer strength:

max % zl: log po(xi|pg(xi) + €0g(x;)) — BDKL(qe(2|xi)||p(2))

In problem 1, we want to decrease 8 and in problem 2, we want to increase
B. Oftentimes, we can adjust 8 manually to get good reconstructions and good
samples. Sometimes, this is hard because earlier on in training, the VAE needs
to learn to pay attention to z and later on in training, it needs to do a better job
of compression so it can sample. So it can be useful to schedule 5 by starting
with a low 3 to get the VAE to use z to reconstruct and later on, raise /3 so the
samples look good.

8.5 Normalizing Flows
8.5.1 Invertible Mappings and Normalixing Flows

Instead of having p(x|z) = N (ftnn(2), 0nn(2)), what if we used a deterministic
function instead: = = f(z)? Now we have

-1
det (df;f>)|

by the change of variables formula. If we can somehow learn invertible mappings
from z to x, this makes the determinant easy to compute. There is no more
need for lower bounds, and we can get exact probabilities/likelihoods. A nor-
malizing flower model consists of multiple layers of invertible transformations.

The training objective is still MLE:
df (2)
det | ——=
¢ (dz

where z = f~!(z). Here, f(2) = fa(f3(f2(f1(2)))). In other words, f(z) is a
composition of many invertible functions. If each layer is invertible, the whole
thing is invertible. Oftentimes, invertible layers also have very convenient de-
terminants. The goal now is to design an invertible layer, and then compose
many of them to create a fully invertible neural network.

p(x) = p(2)

max % Z log p(7;) = max E Z log p(f~ ! (zi)) — log

8.5.2 Nonlinear Independent Components Estimation (NICE)

One idea if what if we force part of the layer to keep all the information so we
can then recover anythings that was changed by the nonlinear transformation.
We create the following architecture where gy is some neural network.

90

21:d neural I1:d = 21:d

Zd+lin é Tdyin — Zd+1n + 99(21:(1)

Notice that with this architecture, we can actually invert the layer as such

Z1:d neural T1:d
net
Zd+1:n l Ld+1:n

We recover z1.q = 21.4, Tecover gp(21.4), and then recover zgi1., = Tgsrim —
go(21.4). The Jacobian of this layer is:

df(z)_[‘i—ﬁtﬁ —ﬂ:[f 0}

I drit1:n dTdyiin dge
e T8 T L@
so then ‘det (”lfd—(zz))) = 1. This is really simple and convenient, but its represen-

tationally a bit limiting since we can’t change the scale. NICE stacks multiple
of these invertible layers and can get reasonable results on MNIST and faces,
but on more complex images, the model starts to struggle.

. -

Y

6
4
q
po!
| o
O
5
7
3

~J

(a) Model trained on MNIST (b) Model trained on TFD

91

e
AlLs

‘as-
’
B

&

3
g 9

.
.

it

TRIGR 1o
NS |

(c) Model trained on SVHN (d) Model trained on CIFAR-10

8.5.3 Non-Volume Preserving Transform (Real-NVP)

Real-NVP makes the invertible layer more expressive with a small change of
adding a scaling factor.

Z1-d | 1.4 = 2Z1.
1:d —= | 1:d 1:d

— neural net

Zd+1:n @_’ @_' Td41:n = Zd+1:n X exp(hﬂ(zl:d)) + gﬂ(zl:d)

The purpose of the exponential transform is just to make it positive. It’s not
enough to use ReLUs since we don’t want zeros. The inverse is derived by
recovering z1.q = 1.4, recovering gop(z1.4) and hg(z1.4), and then recovering
Zd11m = (Tdt1m—go(21.4)/€XP (ho(21:0)). Now our Jacobian becomes

df(z) [1 !

so we have ‘det (df(z))‘ = [1i 441 exp(ho(21:0)i). This is a lot more expressive
and leads to much better generated samples:

92

8.5.4 Concluding Remarks

An advantage of normalizing flows is that we can get exact probabilities and
likelihoods. There is no need for lower bounds and conceptually simpler. How-
ever, it requires a special architecture. Z must also have the same dimensionality
as X. This is a really big deal with high-resolution images.

8.6 Generative Adversarial Networks (GANs)
8.6.1 Construction

In GANS, we train a network to guess which images are real and which are fake.
To do this, we will have two networks: a discriminator which takes in an image
and predicts the confidence that the image is real and a generator which takes
in a latent vector and outputs an image. The training algorithm looks like this:

Algorithm 26 Basic GANs Training

get a "True” dataset Dy = {(x;)}

get a generator Gy(z)

while some stop condition is false do
sample a "False” dataset Dr : z ~ p(2),z = G(z)
train a discriminator Dy(x) = pe(y|z) using D7 and Dy (1 SGD step)
use —log D(z) as loss to train G(z) (1 SGD step)

end while

The optimal G(z) would make D(z) = 0.5 for all generated z, so that the dis-
criminator cannot tell if the generated images are real or fake. In reaching this
optimum, GANs are able to generate images that look realistic as well as gen-
erate all possible realistic images. GANs are able to learn distributions because
if it did not, the generator would not be able to successfully fool the discrimi-
nator. This is because the discriminator could have high confidence in realism

93

in classes the generator is predicting less of than the training class distribution,
and the discriminator could have low confidence in realism in classes the gener-
ator is predicting more of than the training class distribution. Put more simply,
the generator will do beter if it not only generates realistic pictures, but if it
generates all realistic pictures.

8.6.2 Objective Function

The classic two-player GAN game is the a min-max game over the objective
function

mén max V(D,G) = Epmpynra (@) logD(x)] 4+ E.piz) [log(1 — D(G(2))]
Equivalently,
mein max V(0,0) = Exmpunia (@) 108Dy (7)] + E.op2y [log(1 — Dy (Go(2))]

So our SGD steps will look like

P od+aVyV(0,9)

N N
1 1
VgV (0,¢) =~V (N > logDg(w:) + i > log(l- D¢(Ij))>
i=1,2,EDT j=1,2;=G(z;)

00— aVeV(0,0)

N
VoV (0,9) ~ Vo (}V S log(1 - Dqs(Ge(Zj))))

Jj=1

Note that in practice we often use E () [—log(Dy(Gy(2))] instead of E (. [log(1—
Dy;(Gy(2))] because it has a larger gradient when generator is bad and small
gradient when generator is good (alternatively, the more principled method has

a small gradient when the generator is bad and a large gradient when the gen-
erator is good).

8.6.3 Showing Optimal Generator Matches Data Distribution

What can we say about G(z) at convergence?
To figure this out, we first must find the optimal discriminator. Let Dy =
{z; ~ p(x)} and Dr = {z; ~ q(z)}. Then Vp = Ep[ﬁ] — Eq[ﬁ] =0, so

D*(z) = %. Then Df (z) = #‘% where x = G(z) and z ~ p(z).

Now we have

V(D§, G) = Ep,.,. (o) 108(Pdata(2)) — 10g(Paata(z) + pa(z)]
+ Epe (o) [log(pa (7)) — log(paata(z) + pa(z))]

94

If we let ¢(z) = pdata(l';‘i’pc;(z)’

V(Dg, G) = Epyyru(@)[108(Pdata () —log(q())] + Epg (o) [log(pa () —log(q(x))] — log(4)
= D 1(Pdatallq(x)) + Dk (pclla(x)) — log(4)
= Djs(Pdatallpc)

Here Djg is the Jensen-Shannon divergence. JS divergence goes to zero if the

distributions match and is symmetric. Thus, the optimal generator will match
the distribution of the data distribution.

8.6.4 Architecture

Simply, we can use transpose convolutions for the generator network and con-
volutions for the discriminator network.

8.6.4.1 SmallGAN The original GAN paper published by Ian Goodfellow
is able to get somewhat ok results in generation.

8.6.4.2 High-Res GAN With some architectural improvements, in the pa-
per ”Progressive Growing of GANs”, we are able to produce HD resolution
images.

95

RS Mao et al, (2016b) (128 x 128) Gulrajani et al. (2017) (128 x 128] Our (256 x 256)
Figure 5: 1024 % 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

8.6.4.3 BigGAN BigGan is a very big GAN model. It is able to generate
diverse classes. So instead of just training and generating faces or just bedrooms,
it is trained on a diverse dataset and produces diverse images.

(a) 128 128] (b) 256 256 (c) 512x512 (G}
Figure 4: Samples from our BigGAN model with truncation threshold 0.5 (a-c) and an example of
class leakage in a partially trained model (d).

The architecture for BigGAN is attached below:

96

a real architecture (BigGAN)
=]

(a) () ch

Figure 15: (a) A typical architectural layout for BigGAN’s G; details are in the following tables.
(b) A Residual Block (ResBlock up) in BigGAN's G. (¢) A Residual Block (ResBlock down) in
BigGAN's .

8.6.4.4 Conditional GANs We can also condition the GANs on something
like a class label by appending that information onto the discriminator and
generator inputs.

— -
—
EESEEE e
(TXXT)
. 00000 00000

(™ - 90000 | \ append conditioning (e.g., class label)
_ : to both generator and discriminator
e0000

00000 00000

Conditional Adversarial Nets are able to perform image-to-image translation.

97

Labels to Facade

input

Aerial 1o M

output output output
Example results on several image-to-image franslation problems. In each case we use the same archifecture and objeclive, simply Iraining on different data.

input input

INPUT OUTPUT

Y|
GorT ||
L] ‘

8.6.4.5 CycleGAN What if we wanted to do unpaired image-to-image trans-
lation?

Summer 7 Winter

Photograph

For instance, we want to translate a horse into a zebra. However the horse and
zebra images are unpaired. This where CycleGAN comes in. A CycleGAN has
two conditional generators: G turns X into Y and F turns Y into X. It has two
discriminators: Dy for X and Dy for Y. The architecture looks like this:

98

g ¥ a
o EEE BGTE
~ i %. Y] [x

./- | L yele-consistenc
. T cycle consistency \\.h-> (3\" ey

Leye(G, F) = Eqrpyu (=) [|IF(G(2)) — 2[|1]
If I turn this horse into a zebra, and + Eympun(IG(F (1)) = yll1]-

then turn that zebra back into a
horse, | should get the same horse! \/

Our input image x is put through the generator G to produce Y, which is then
rated by Dy. This is one part of the loss and similar to classic GANs so far.
However, why would the translated Y look anything like the original 7 In other
words, if we put a horse image through G to produce a good zebra image, why
would the zebra image be similar to the horse image?

This is where we need to add in the cycle-consistency loss, Lcy.(G, F'). We take
Y, put it through F' to get . Our cycle-consistency loss measures how different
Z is from z. We try to minimize this in additional to our other loss.

8.6.5 Improving GAN Training

8.6.5.1 Motivation Without additional tricks, GANs will require a lot of
expertise and fine-tuning in order to get working. One reason is because the
generator gradient can be unmeaningful. In the example below, the discrimina-
tor separates the real and generated data completely, leading to the generator
gradient to be the same no matter the generator’s prediction. This makes it
impossible for the generator predictions to mix into the real data distribution.

99

pdata(-?") D(J:) 'pG(:L‘)

v"ﬁi-'d-

/

real data generated data

what is the generator gradient here?

Hgll 1’[]5[)1)(V(B O) = E.'rmpdﬂm(.r:) [log D¢(J)] + EZ’\‘IE(Z} []Og(l - D“’(Ge(z)))}

T

all of these values are basically the same

How do we fix this? There are a few different tricks we could use to improve

training:

1. Least-Squares GAN (LSGAN): discriminator outputs real-valued number.

This allows for a smoother slope for the discriminator.

2. Wasserstein GAN (WGAN): discriminator is constrained to be Lipschitz-
continuous, which encourages a cleaner slope between the real and gener-

ated data.

3. Gradient Penalty: Improvement on the WGAN by constraining discrimi-

nator to be continuous even harder.

4. Spectral Norm: Improvement on WGAN by really constraining discrimi-

nator to be continuous.

5. Instance Noise: Add noise to the data and generated samples in hopes of

getting real and generated data distributions to overlap more.

8.6.5.2 Wasserstein GAN (WGAN) One thing to notice is the JS diver-
gence doesn’t account for the distance between distributions. In the example
below, the JSD are almost identical in both cases. As a result, the loss will be
near zero in the first case, so the gradient will not be meaningful to help get the

generated data closer to the real data distribution (as in the second state).

100

Pdatal®) = 0 for all © where pe(z) £ 0
V(DE-' G) = E:Pdnm(a:)[lngdﬂta(x) — log(pdata () + pa(z))]+

T
pl) Epe ()08 PG (2) — 108 (pasta() + p ()]
N pe(z) = 0 for all © where paaga()
Pdata(-’ff) “really far apart” j e (I)
Y R
JSD (and KL-divergence, and most
p(x) “really close together” other divergences) are almost identical
in these two cases!
Paata(T) /\ pa(z) This is why GANs are so hard to train
ata 4

This motivates looking for a better metric that sees how far apart all the bits
of probability are. More precisely, this is a optimal transport problem looking
at how far you have to go to transport one distribution into another. Formally,
the Wasserstein distance is

W(pdataapG) = lgf E(z,y)N'y(z,y) [H.T - y”]

where v(z, y) is the distribution of x and y with marginals yx (z) = pgata () and
vy (y) = pe(y). The intuition is that correlations between x and y in v(z,y)
indicate which x should be transported to which y.

Y

Pdata 7(3": y)

SN

@
ba

ate

However learning v directly is very hard, so we can use Kantorovich-Rubinstein
duality (***) to show that

W(pdatmpG) = Ssup Epdata, [f(l‘)] - Epc(z) [f(l‘)]
Ifllz<t

where || f|| < 1is the set of all 1-Lipschitz scalar functions | f(xz)— f(y)| < |x—y|
(i.e. slope is bounded). Note that this looks very similar to the classical GAN
loss. If f was a neural net, how would we add the constraint that f must be
1-Lipschitz? A naive approach is to clip the weights to bound the slope. With
multiple layers, note that we can’t guarantee 1-Lipschitz anymore, but rather

101

K-Lipschitz for some finite K. The issue with weight clipping though is that
if the clipping parameter is too small, we have the vanishing gradients issue,
and when clipping parameter is too large, it will make it harder to train the
discriminator since it will take a long time for weights to reach their limit.

To summarize, WGAN training can be described as

Algorithm 27 WGAN Training
1: while some stop condition is not satisfied do
2. update fp using gradient of Eynp,,,. [fo(7)] — Ezopia) [fo(G(2))]
3: clip all weight matrices in 0 to [—c¢, ¢|
4: update generator to maximize E,) [fo(G(2))]
5. end while

8.6.5.3 Wasserstein GAN-Gradient Penalty (WGAN-GP) Instead
of weight clipping, gradient penalty bounds the slope by adding an additional
term to the loss:

Eorpaaralfo (@) = AV o ()2 = 1)%] = B [fo (G(2))]

This forces the norm of the gradient to be close to 1. This appracoh tends to
work quite well.

8.6.5.4 Spectral Normalization for GANs Another way is to bound the
Lipschitz constant in terms of the singular values of each W;. We know that
I f2 0 fillLip < |l f2llLipll f1llLip- This gives the intuition that we can normalize
each layer of the network separately to bound the Lipschitz constant of the
entire network. We know that the max slope of Wz 4+ b is the spectral norm:

Wh
= max Wk = max ||IWh]||
h:h£0 || R l[R]|1

a(W)

At each gradient step, we now force W, + U(V‘[//[l,l).

102

9 Generalization of Neural Networks

9.1 Do Deep Nets Generalize?

When deep nets make mistakes, sometimes it makes sense since the task could
be hard. However, deep nets can run into certain issues with generalization.

9.1.1 Distributional Shift

One source of trouble in deep learning is that test inputs might come from a
different distribution from training inputs. This is especially problematic if the
training data has spurious correlations. For instance, a classifier may classify an
image of a husky as a wolf because the background of the image has snow, and
the training data has a lot of wolves with snow backgrounds rather than dogs
with snow backgrounds. In other words, there is spurious correlation between
the snow and wolf.

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Some more realistic examples are:

1. Medical imaging: different hospitals have different machines, or different
positive rates, inducing a machine to label correlation

2. Selection biases: center crop, canonical pose, etc.

3. Feedback: the use of the ML system causes users to change their behavior,
thus changing the input distribution

9.1.2 Calibration

To be calibrated means that the predicted probabilities reflect the actual fre-
quencies of the predicted events. For instance, if an image classifier outputs
“husky: 0.3, wolf: 0.7”. This means that 7 out of 10 times, a person would
say that the image is a wolf. For out of distribution data inputs, it should then
output “husky: 0.5, wolf: 0.5” because it doesn’t know what it is. This doesn’t
usually happen because models typically give confident but wrong prediction on
OOD inputs. This is because the model is trained to classify one of the classes,

103

so there is no reason for it to predict non-confident values. In-distribution pre-
dictions are also not usually calibrated for a similar reason.

9.2 Adversarial Examples

Adversarial examples that special patterns, almost imperceptible to people,
which can change a model’s classification drastically.

4+ .007 x

“panda” “nematode” “gi;‘.)bon"
57.7% confidence 8.2% confidence 99.3 % confidence

We can find adversarial examples to basically turn anything into anything else.
It is not easy to defend against. Obvious fixes can help, but nothing provides
a bulletproof defense (so far). Adversarial examples can transfer across net-
works. They are not specific to neural networks. Virtually all learned models
are susceptible to them.

9.2.1 The Argument Against Overfitting Hypothesis

From the outset, it may seem that models being susceptible to adversarial exam-
ples is due to overfitting. The hypothesis is that because neural nets have a huge
number of parameters, they tend to overfit, making it easy to find inputs that
produce crazy outputs. Most evidence however suggests that this hypothesis is
false:

1. If this were true, we would expect high variance between models. However,
different models can have the same adversarial examples.

2. If this were true, we would expect low capacity models (i.e. linear) to not
have this issue, but this is not true either.

3. If this were true, we would expect highly nonlinear decision boundaries
around adversarial examples, but this isn’t true either.

9.2.2 The Argument For Linear Models Hypothesis

Instead the more likely hypothesis is the linear models hypothesis: because
neural networks tend to be locally linear, they extrapolate in somewhat coun-
terintuitive ways when moving away from the data. The idea is that the issue is

104

not that we are overfitting, but that we are underfitting. In the images example,
we can imagine that , our training data of real images has some structure to it,
so there is a "realistic images” manifold within the space of all possible pixel
combinations that we fit our data too. Adversarial examples simply perturb
away from the ”realistic images” manifold enough so that it crosses the linear
boundary between classes (this is linear because neural networks are linear lo-
cally). Below is a 2d example where we see a linear boundary as well as a blue
ring which represents the ”realistic images” manifold.

“realistic images” manifold

adversarial examples are things like this

Note that linearity helds with nice gradients for backpropagation so it isn’t
something we can get rid of. Also, even a non-linear activation function like
a sigmoid is linear locally, so changing the activation won’t solve this. This
hypothesis is consistent with transferability of adversarial examples.

In the experiment below, we start at a picture of an automobile, add or subtract
a noise vector ce to the image, and then see the softmax predictions of our model
on the perturbed image.

— airplane
automobile
600 — bird
cat
deer
dog
— frog
horse
— ship
truck

400

200

Argument to softmax

—200

—-400 -
=30 =20 =10 0 10 20 30 ¢

original car image

With small perturbations, we see that the softmax value of automobile is high-
est. However as we increasing the value of ¢, we see that the softmax values

105

extrapolate linearly. As a result, for large noise, the frog prediction actually has
the highest softmax value. Here, we see that the linearity of neural networks
influences the fact that it is not calibrated. If it were calibrated, all the classes
should have the same softmax value for high ¢ because the network should be
uncertain on which class is shown.

In a second experiment, we vary images along two directions: an adversarial one
and a random one orthogonal to the adversarial one. In the plot below, each
small square is an image. The color filled in represents the class that is predicted.
The axes of the image are transformed so that the x axis is the adversarial
direction and the y axis is the orthogonal direction (randomly chosen).

Random among
orthogonal to
FGSM

l—» FGSM

—€

- / X

adversarial direction

.n |

We see that there is not much variation orthogonal to the adversarial direc-
tion. However, there is a clean shift on one side for the adversarial direction,
suggesting a mostly linear decision boundary.

9.2.3 Generalization

Adversarial examples are not bugs, they are features of your learning algorithm.
Neural networks pay attention to adversarial directions because it helps them
to get the right answer on the training data. Essentially, neural networks gener-
alize very well on test sets drawn from the same distribution as the training set.
But they are often not well-calibrated, especially on out-of-distribution inputs.
There is reason to believe that adversarial examples are actually due to exces-
sively linear models attempting to extrapolate in addition to the distributional
shift problem.

106

9.3 Adversarial Attacks
9.3.1 Introduction

An adversarial attack is 2* < argmax,. p(, o)< Lo(2',y) where R(z, 2') is some
relation between x and x’. For example, Roo(z,2') = || — 2'||co. A defense to
this attack would be 8% < argming Z(I’y)GD Maxy. g(z,2)<e Lo(2',y). The loss
function here is a robust loss. Note that the caveat is that formally defining an
adversarial attack can hide some important real-world considerations.

9.3.2 Fast Gradient Sign Method (FGSM)

A very simple approximate method for an attack is FGSM. We approximate
L(2' y) ~ L(x,y) + (' — 2)TV,L. Ordinarily, this would make a weak attack
but we have seen how neural networks seems to behave locally linear, so this
turns out to be ok. So now our attack with the infinity norm relation is:

z* < argmax (2’ —2)TV,.L

@/t o—a||oc <e

So then z* = x + esign(V,L). This works very well against standard neural
nets but can be defeated by simple defenses.

9.3.3 FGSM with Lagrange Multipliers

We can write a more general formulation of »* < argmax,. g,)< Lo(2',y)
with Lagrange multipliers: z* «+ argmax,, Lg(2',y) — AR(z,2’). We can now
optimize this to convergence. For the lagrange multiplier, who could choose
something heuristically or optimize it with dual gradient descent. In general,
such attacks are hard to defeat.

9.3.4 Transferability

Adversarial attacks are oftentimes transferable between learning methods. In
particle, this means that we don’t need to do direct gradient access to a neural
network we are actually attack. Instead, we can just use another neural network
to construct our adversarial example.

107

o
=
4

-
=

SVM

Source DNN

Source Machine Learning Technique
g
=

=
=z
=z

82.16 8295

LR SVM DT KNN Ens.
Target Machine Learning Technigue Target DNN

% success rate at fooling one model when trained on another

9.3.5 Zero-Shot Black-Box Attack

Transferability motivates zero-shot black-box attack, where we train an adver-
sary on the white-box model (which is perhaps similar to what we think the
black-box system is like) and use adversarial examples on the black-box sys-
tem. Ensembling multiple white box models to find adversaries that trick all
the models can also get better transfer results.

Adversary

Transfer to Transfer to
Adversarial — Black-Box

Eara System

Adversarial

Examples

White- ~ White-
Box Box

White-Box

Model

Model Model

9.3.6 Finite Differences Gradient Estimation

It is also possible to estimate the gradient with a number of queries to a model
without directly accessing its gradient. For each dimension i of x, we get v; <
L(z +1073¢;,y) and then estimate VL ~ (v — L(z,y))/(1073).

108

9.3.7 Adversarial Attack Defense

With adversarial training, we increase the robustness to adversarial attacks,
but decrease overall accuracy on the test set. A simple recipe for adversarial
training is

Algorithm 28 Adversarial Training
1: sample minibatch {(x;,y;)} from dataset D
2: for each z;, compute adversarial z/ (e.g. FGSM)
3: take SGD step: 0 < 6 —a), VoLg(x],y;) (we can also add in the original
loss grad)

109

10 Meta-Learning
10.1 Introduction (Black-Box Meta-Learning)

Meta-learning means learning to learn. The idea is that we have plentiful data
from other previously seen tasks to learn how to learn, and then learn the new
task more efficiently from small amounts of data. In practice, it is very closely
related to multi-task learning. In generic supervised learning, we have

0* = argmin £(6, D) = fiearn (D)
0
In generic meta-learning, we instead have

0" = argminZE((bi,DES) where ¢; = fo(DL")
[4

i=1

An example meta-learner can be an RNN, which takes in the training dataset
D! and now ¢; = [h;,0,] where h; is the RNN hidden state and 6, are the
meta-learned weights.

Ytest «— test label

|
e
I I I I

(;1*1,1!}1) (-T»'Q,LUQ) (5113:"9’3) Ttest
1 J
T

o test input
(few shot) training set

In training, the meta-learner is trained on many sequences of a few shot training
set and test set. Meta-learning methods break down into three types:

1. Black-box meta-learning
2. Non-parametric meta-learning
3. Gradient-based meta-learning

Black-box meta-learning has already been discussed above with the RNN exam-
ple above. Other architectures like transformers or memory-augmented neural
networks also work. Non-parametric meta-learning and gradient-based meta-
learning will be discussed below.

110

10.2 Non-Parametric Meta-Learning
10.2.1 Overview

In non-parametric meta-learning, we essentially do a nearest-neighbors between
classes in the training set for our test input. This works because we meta-train
the features ¢. In the graphic below, we have 5 training images and our test
image on the right is the same class of at least one of the training images.

by lo A3 Ly U

C |
IREEE @

l nearest l
neighbor
1

comparison

Here,

n n m
0" = argming) _ L(fo(D{"), Df*) = argming — » > log(pe(y}’|a}, D}*))

i=1 i=1 j=1

fo() is our learned soft nearest-neighbor classifier. One definition of py() is
P D) = S puearest (el le)
k:y?‘:y;s

where ppearest ()] [25%) oc exp(p(af)) ¢(2%%)) and ¢() is learned.

10.2.2 Matching Networks

Matching networks are non-parametric meta-learning networks with one net-
work for training embedding, ¢g() and one network for test embedding, f(). So,
we have

Prearest (x?|z§5) X exp(g(xg, Dfr)Tf('T;'sv Dfr))

111

;l
g
#

Both f and g are conditioned on the entire training dataset. More specifically,
g is a bidirectional LSTM embedding, and f attentional LSTM embedding.

g(z}, D) bidirectional LSTM embedding

f(rgb, D.Er) attentional LSTM embedding

9@, Dj") weeee

:I:tr‘ D!‘Jr .l. = ‘__-,'--:.‘)
i § ¥ G

g(af. DY) 4y

10.2.3 Prototypical Networks

Prototypical networks are matching networks with 2 changes:

1. Instead of ”"soft nearest neighbor,” construct prototype for each class

s r s 1 r
po(ylz}®, Di") o< exp(ey f(a5)), ¢y = N > gl
4 kytr=y

112

2. Because our network doesn’t condition on the training set directly, we can
get rid of the complex LSTM. Instead, we can just use a CNN for both f
and g.

10.3 Gradient-Based Meta-Learning
10.3.1 Model-Agnostic Meta-Learning (M AML)

In one-shot or k-shot learning, we are really asking for the model to learn gener-
alization representations. A question that arises then is if pretraining is a type of
meta-learning? After all, pretraining initializes the network at better features,
leading to faster learning of the task. MAML uses this idea as motivation. In
meta-learning, our optimal parameter is

0" = argminZL’(qﬁi,D?) where ¢; = fo(DL")
0

i=1

In MAML, we have
fo(DI") =0 — aVeL(0, D)

In other words, fo(D!") is just a fine-tuning algorithm. Note that a few gradient

steps can be taken here.
N — . — [Label]

0 0—B VoL(® —aVeL(8, D), DY)

— meta-learning

8 ---- learning/adaptation 9/
VL
Vﬁz
VLl N b5
0; 0

More intuitively, for every training task, we create a copy of the current model
and take gradient steps on that training task. Then we take the sum of gradient
steps of each model copy on the test set to update our model.

In supervised meta-learning, f(D'",z) — y. In MAML, fayanrn (D x) — v,
where fyanmr (D, x) = fo (z) and

0 =60—a Z VoL(fo(x),y)

(z,y)eD*r

113

So in implementation, MAML is just another computational graph that can
implemented with an autodiff package. It also has good inductive bias, because
gradient descent is used. This is in direct contrast to black-box meta-learning,
where there is no optimization for x¢yqin to fit to yirein.

A meta-algorithm is universal if it can learn any algorithm. More precisely, it
can represent any function f(Dirgin,2). It turns out that MAML is universal
just like black-box meta-learning.

10.4 Summary
10.4.1 Black-box Meta-Learning

Black-box meta-learning is conceptually simple and benefits from advances in
sequence models. However, it has minimal inductive bias (i.e. everything has
to be trained). It also hard to scale to medium shot learning problems, because
then we will have long sequences.

10.4.2 Non-parametric Meta-Learning

Non-parametric meta-learning can work very well by combining some inductive
bias with easy end-to-end optimization. However, it is restricted to classifica-
tion; it cannot extend to regression or RL. It also requires somewhat specialized
architectures.

10.4.3 Gradient-based meta-learning

Gradient-based meta-learning is easy to apply to any architecture or loss func-
tion. It has good generalization to out-of-domain tasks. However, it is harder
and requires more tuning. This is partially because it requires second deriva-
tives, so learning is more unstable.

10.5 Meta-Reinforcement Learning
10.5.1 Overview
In generic RL,
0" = argmaxy E. () [R(7)] = fre (M) where M = {S, A, P,r}
In Meta-RL,
0* = argmax, i Er,,(n)[R(7)] where ¢; = fp(M,)
i=1

In Meta-RL, we make the assumption that M; ~ p(M) in training. Then
in test-time, Myest ~ p(M). A simple example of this is that different tasks
correspond to our agent running at different speeds in different directions.

114

10.5.2 Meta-RL with Recurrent Policies
We want fp(M;) to
1. improve policy with experience from M;
2. (new in RL) choose how to interact/explore (i.e. choose a;)

One idea is to use black-box meta-learning for RL where RNN inputs are the
(8i, i, Siq1,7;) tuples:

_ meta-learned
RNN hidden weights

(* “ =
= H)

as before, ¢; = [h;, 0]
| e :
I !

(81,81, 82,71) (89.a2,83,72) (83,03,584,73) 5

I_'_l
76,(als)

By meta-training this RNN, we fulfill the first goal which is to improve the policy
from experience. But why do recurrent policies learn to explore? Crucially, we
need the RNN hidden state to not reset between episodes. So, for the meta-
learner, the data input is one long meta-sequence where the agent teleports
back to the start position in between. Optimizing total reward over the entire
meta-episode with the RNN policy automatically learns to explore.

10.5.3 MAML for RL
Adapting MAML for RL is also straightforward through policy gradient:

0 0+8> Voild+aVeli(0)]

— meta-learning
---- |earning/adaptation 9’

%
V,C;g
VL,
A\ P 3

g N 05

115

11 Guest Lectures

11.1 Phillip Isola, MIT [Generative Models as Data++]

11.1.1 Overview

Data-++ is data with extra functionality. We will define it as X = {z, 2, G,G~'}
where we have our datapoint x and our latent variable z. G is then the mapping
from z to x.

If we were to interpolate two images in data space, we our likely go out of
distribution of the manifold of natural images:

Interpolation Data space
in data space (Natural image manifold)

However, the idea is if we interpolate in latent space, we can remain within
distribution:

Interpolation Latent space Data space
in latent space (Gaussian) (Natural image manifold)
Z X

\,
\

[BigGAN, Brock et al. 2018]

116

11.1.2 On the ”steerability” of Generative Adversarial Networks
[Jahanian*, Chai*, Isola, ICLR 2020]

To what extent can we meaningfully manipulate data++ via vector arithmetic?
X1 4+ w — Xo. In a real example, what if we wanted a meaningful generated
image of an image shifted up by simply adding a vector to the latent embedding
of the original image?

Latent Space Image Space

G(z + aw) edit(G(z, a))

G(z)

The authors were able to do this by training an GAN with the loss
w* = argmin,, E, ,[L£(G(z + aw), edit(G(z),))]
With this, we can zoom, shift, and brighten/darken.

11.1.3 GANSpace [Harkonen, Hertzmann, Lehtinen, Paris, 2020]

By mapping the latent space back to the activation space, doing PCA, and map-
ping these PCA vectors back the latent space, the authors here found meaningful
directions since there corresponded to high-variance in the feature space.

Initial image ; change color add grass

117

11.1.4 StyleGAN [Karras, Laine, Aila, 2018]

In the StyleGAN model, we map z to an intermediate representation w. The
directions in w space turn out to be a lot more disentangled than direction in
z space. The intuition here is that the z space is spherical (since its gaussian),
but the distribution of the training dataset is not spherical. Thus, the inter-
mediate w space can be the intermediary that allows for a better disentangled
representation than z space.

. StyleGAN

Latent z € Z . Noise
Synthesis network g
Normalize Const 4x4x512

Mapping

[“StyleGAN", Karras,
Laine, Aila, 2018]

11.1.5 StyleSpace [Wu, Lischinski, Shectman, 2020]

In this paper, the authors were able to change the features of a car by doing
vector arithmetic on w space.

[“StyleSpace”, Wu, Lischinski, Shechtman, 2020]

118

11.1.6 GANalyze: Toward Visual Definitions of Cognitive Image
Properties [Goetschalkx*, Andonian*, Oliva, Isola, ICCV 2019]

In this paper, the authors create a network that generates ”memorable” images.
It is created with a generative model that takes a random noise vector z and
outputs an image and a neural network that predicts the memorability of the
image. By backproping, we find a direction in latent space that is optimized to
increase our memorability score. In doing so, we can generator an continuum
of images that are more and less memorable.

T ir.9r
zZ — |.": i ¢
- s g ee s —> EEONH — - ‘:- y (a — - A(G(Tu(z.a).)'))
0+/ z 0 Ty(z.00) - § ‘/E
o e.g., BigGAN G(Toz.a)y) e.g., MemNet

Memorable images are zoomed in, more circular, symmetric, simpler, and more
saturated /red /bright. We can also train this model on datasets that rate aes-
thetics and emotional valence. From this, we can find interesting properties of
what makes images more memorable, aesthetic, emotional, etc.

119

Memorability

Note that this is all possible because we are working with data4++. With just
data, we could just generate an adversarial example because we are taken off
the manifold of natural images.

11.1.7 StyleCLIP [Patashnik, Wu, et al., 2021]

With data++, if we have a differentiable function that can predict say the
cuteness of a cat, we can then generate cute cats.

“Cute cat™ “Lion™ “Gothic church”

[“StyleCLIP", Patashnik, Wu, et al., 2021]

11.1.8 Inferring Latent Variables via Autoencoding

If we want to infer latent variables, we can freeze our generator and train our
encoder via autoencoding:

120

in

—

G L
The object to train this will be
EZNN(O,l);sz(z)LQ(xa GE(ib)) + ‘Cp(xv GE(Z’)) + ‘C’Z(z7 E(X))

The first two terms are an image reconstruction loss. The second loss represents
perceptual distance. The last loss is the latent recovery loss. One interesting
thing to do is to mask the input image to see what the generator predicts.

11.1.9 Using Latent Space Regression to Analyze and Leverage Com-
positionality in GANs [Chai, Wulff, Isola, ICLR 2021]

Composing data is hard in pixel space, but is doable in data++ space.

wall window

@ o y invert
m compose T
! ®

= .

X = | maski ® x; Xee = G(E(x,1g, U; mask;))

This can be done by composing the images in pixel space to create a collage
and then use an autoencoder to reconstruct the image using an GAN.

11.1.10 Ensembling with Deep Generative Views [Chai, Zhu, Shecht-
man, isola, Zhang, CVPR 2021]

With data++, we can perturb on the latent space to generate new images, and
train an ensemble on all the images. This helps minutely increase accuracy.

121

Input Image

0y
“
.
«
.

[
\

(o]

©
@
©

Generator Samples 2
> 93.7
3 93.6 Y
Qo
Q
—_—— < 935
G C E_ -
o 0 5 10 15 20 25 30
Number of
" GAN samples
C E_
Latent ':‘.’1
Space Generator Classifier

11.1.11 DatasetGAN [Zhang*, Ling*, Gao, Yin, Lafleche, Barriuso,
Torrabla, Fidler 2021]

The idea behind DatasetGAN as well as [Tritrong*, Rewatbowornwong*, Suwa-
janakorn, CVPR 2021] and [Li, Yang, kries, Torralba, Fidler, CVPR 2021], is
that because the latent space is semantically meaningful, neighbors in the latent
space can be put into the same semantic category. This cannot be done in pixel
space. Practically, the authors use StyleGAN to find a mapping between the w
space and the semantic labels.

[Style-Interpreter Pixel 1
Latentze z 1 classif. |\
I
] Synthesized ii .
Network ynthesized image

BatchNorm

Pixel feature

Style-based Featire maps “oCtr .
Generator \ (256 %256 x 5056) Lhxixonee) Ensemble classifiers

L A,

Synthesized label

In this example, with only 20 labeled examples of cars, the model can generalize
to the same accuracy as if trained on 2000 labeled examples without GANs.

Roof —, ~Mirror
\ | Front door window
Carbody -\ |/ ,Back door window
Windshield \ \ [/ | Backdoor
Car light left -, (Back handle
Hood — \ .

Logo~ >

S

N
“-Back bumper
“— Running board

\ =
| T\ \ \ 'Front handle

||\ Fender’ \\ _ “Front door

| | ‘Licenseplate | \ ‘-Frontwheel ﬁ, J—
d) | ‘orill \ . Spole e)- @ — f)

. Bumper Wheelhub

122

11.1.12 Data++ Summary

Samples from implicit generative models act like decorated data, data+-+, with
extra functionality. With special operators, you can interpolate, extrapolate,
manipulate, compose, optimize, and label these datapoints. Everything you
can do with regular data, you can also try with data++, and it might work
better. One big limitation in data++ and GANs proposed by critics during this
guest lecture is that we expect the GAN to learn the correct correspondences, so
sometimes we have to cross our fingers that it doesn’t learn spurious correlations.
Also, in GAN training, mode collapse is clearly an issue.

11.2 Azalia Mirhoseini and Anna Goldie [Placement /Combinatorical
Optimization with ML]

Did not take notes on this guest lecture.

11.3 Raquel Urtasun [Interpretable Neural Motion Plan-
ning]

Did not take notes on this guest lecture.

11.4 Noam Brown [ReBel]
11.4.1 Overview

Brown focuses on presenting his new paper ReBeL : Combining Deep Reinforce-
ment Learning and Search for Imperfect-Information Games [Noam Brown*,
Anton Bakhtin*, Adam Lerer, Qucheng Gong, FAIR]. ReBeL, or Recursive
Belief-based Learning, works in both perfect- and imperfect-information games.
In perfect-info games, it reduces to something similar to AlphaZero. It is su-
perhuman in two-player no-limit hold’em poker. ReBeL. provably converges to
a Nash equilibrium in two-play zero-sum games.

11.4.2 Nash Equilibrium

Nash equilibrium is a set of strategies in which no player can improve by de-
viating to a different strategy. In two-player zero-sum games, playing in Nash
equilibrium ensures you will not lose in expectation. Exploitability is how much
we’d lose to a best response. We make the assumption that our strategy is com-
mon knowledge, but the output of random outcomes are not common knowledge.

11.4.3 AlphaZero (Simplified Overview)

In perfect-information extensive-form games, moves are done sequentially, not
simultaneously. Game forms a tree. In two-player zero-sum, these numbers
always sum to zero. A state must be a sufficient statistic, or must contain all
relevant info needed to compute the optimal next move. In Go, AlphaZero

123

needs the last 8 board configurations. In the worse case, the state is the entire
sequence of actions. In perfect-information games, the value of a state is the
unique value resulting from both players playing optimally from that point for-
ward. A value network takes a state as input and outputs an estimate of the
state value. DeepBlue’s value network is a handcrafted heuristic, AlphaGo’s
value network is learned by training on expert human games, and AlphZero’s
value network is learned through self-play RL.

Chess AD’s do search by looking around 5 moves ahead, estimating those state
values using the value network, and doing backward induction using those state
values. In other words, they solve a subgame. AlphaZero starts with an un-
trained value network and policy network. It sets the leaf nodes values based
on the value network, chooses the next action based on the solution to the sub-
game, and repeat until the end of the game. This signal on who wins is used as
a training example for all encountered states. With some random exploration,
AlphaZero would in theory encounter every state and learn every state’s true
value.

11.4.4 ReBeL

AlphaZero doesn’t work in imperfect-information games because perfect-information
states don’t have unique values in imperfect-information games. One solution
is to define an imperfect-information game state as a probability distribution
over ”action-observation histories” (AOHs, or ”infostates”). We can convert
imperfect-info games into continuous-state perfect-information games in this
way. In theory, we can run AlphaZero on this. But in practice, the action space
is continuous with potentially thousands of dimensions, and AlphaZero’s tabular
search would be completely intractable. The continuous action space has a spe-
cial structure: it is convex. We can efficiently solve an imperfect-information
subgame using search algorithms like counterfactual regret minimization and
fictitious play. This is what ReBeL does. It chooses random action with €
probability to ensure proper exploration. With tabular tracking of PBS values,

ReBel will converge to a % Nash equilibrium in finite time, where T is the

number of CFR iterations.

124

	Note
	ML Basics
	Risk
	Bias-Variance Tradeoff
	Regularization

	Gradient Descent
	Gradient Descent
	Newton's Method
	Gradient Descent Optimization Algorithms
	Gradient Descent Variants

	Neural Networks
	Description of Neural Networks
	Backpropagation
	Batch Normalization
	Weight Initialization
	Gradient Clipping
	Ensemble Learning

	Computer Vision
	Convolutional Neural Networks (CNNs)
	Standard Computer Vision Problems
	Visualizing CNNs
	Deep Dream
	Style Transfer

	Natural Language Processing (NLP)
	Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM)
	Autoregressive Models
	Seq2Seq
	Attention
	Self-Attention
	Transformers
	Word Embeddings
	Pretrained Language Models

	Reinforcement Learning
	Imitation Learning
	Introduction to Reinforcement Learning
	REINFORCE [Introduction to Policy Gradients]
	Actor-Critic [Policy Gradients Formalized]
	Policy Iteration, Value Iteration, and Q-Iteration
	Q-Learning

	Unsupervised Learning
	Autoregressive Generative Models
	Autoencoders
	Latent Variable Models
	Variational Autoencoder (VAE)
	Normalizing Flows
	Generative Adversarial Networks (GANs)

	Generalization of Neural Networks
	Do Deep Nets Generalize?
	Adversarial Examples
	Adversarial Attacks

	Meta-Learning
	Introduction (Black-Box Meta-Learning)
	Non-Parametric Meta-Learning
	Gradient-Based Meta-Learning
	Summary
	Meta-Reinforcement Learning

	Guest Lectures
	Phillip Isola, MIT [Generative Models as Data++]
	Azalia Mirhoseini and Anna Goldie [Placement/Combinatorical Optimization with ML]
	Raquel Urtasun [Interpretable Neural Motion Planning]
	Noam Brown [ReBeL]

